وزارت صنایع و معادن سازمان زمین شناسی و اکتشافات معدنی کشور

طرح تلفيق لايه هاى اطلاعات پايه و معرفي نقاط اميد بخش معدني

<mark>گزارش</mark> نهایی

اكتشاف طلا در منطقه سوسن وار

مجری طرح : ناصر عابدیان مجری فنی : بهروز برنا ناظرین فنی: محمدرضا هزاره

مهدی زمردیان

سال ۱۳۸۶

یع و معادن	وزارت صناي
سازمان زمین شناسی و اکتشافات معدنی کشور	
، و شناسایی مناطق امید بخش	طرح تلفيق لايه هاي اطلاعاتي
ر منطقه سوسن وار	پروژه اکتشاف طلا د
اصر عابدیان	مجری طرح: ف
بهروز برنا	مجری فنی:
هزاره ، مهدی زمردیان	ناظرین فنی: محمدر ضا د
شماره گزارش: Kav-SS1	مرحله: نهایی
مدیر پروژہ: هومن کریمی	تهیه کنندگان به ترتیب حروف الفبا:
مشاور ژئوشیمی (تا مرحله طراحی ترانشه):	۱- محمد آبشیرین
على اصغر حسني پاک	۲- رستم آزادگانیان
مشاور زمین شناسی: محمدرضا سهندی	۳- محمدرضا آزادی
کنت ا : مسعود :اهدی	۴- بهرام بیضایی
یری از را بی تابب خانہ آیفت	۵- حسن دانشیان روح نواز
	۶- محمدرضا سهندی
	۷- هومن کریمی
	۸- مجید مرادی
	۹– صابر سهیلی
سال: ۱۳۸۶	مطالعات سنگ شناسی:
4 8)	۱- فریبا عزتیان
کاوش کانسار Kaveji Kanjar	۲- جمشید روح شهباز

تشکر و قدردانی

بدینوسیله مراتب تشکر و قدردانی خود را از جناب آقای مهندس عابدیان معاونت محترم اکتشاف سازمان زمین شناسی و اکتشافات معدنی کشور و مجری محترم طرح وهمچنین جناب آقای مهندس برنا مجری محترم وقت طرح اکتشافات سراسری ذخایر معدنی و نماینده محترم کارفرما که با راهنمایی و همکاری های بی دریغ خود موجب تسهیل و تسریع امور گشته اند ابراز می دارد. همچنین از جناب آقای دکتر هزاره مجری محترم فنی و جناب آقای مهندس زمردیان ناظر محترم پروژه که با رهنمودهای لازم و در اختیار نهادن اطلاعات مورد نیاز در اجرای ایس پروژه ما را یاری نموده اند و نیز سایر عزیزانی که با هماهنگی های لازم موجب گردیده اند ایس مهندسین مشاور مسئولیت خود را به نحو شایسته ای به پایان برساند، تشکر و قدردانی می نماید.

مدیریت و کارشناسان شرکت مهندسی کاوش کانسار

چکیدہ

منطقه شمال سوسن وار در ۱۲۰ کیلومتری جنوب دامغان و بخش معلمان از آن مناطقی است که بر اساس مطالعات ژئوشیمیایی پتانسیل لازم برای کانه زایی طلا را دارا بوده است. بر پایه مطالعات اکتشافی مختلفی که در این منطقه و اطراف آن صورت پذیرفت، در نهایت شمال سوسن وار برای مطالعات اکتشافی فاز ۵۰۰۰: ۱ به وسعت ۵ کیلومتر مربع معرفی گردید. کارشناسان این مشاور با انجام مطالعات دفتری و صحرایی مقدماتی، اقدام به طراحی شبکه برداشت نمونه های لیتوژئوشیمیایی به تعداد ۲۰۵ نمونه نمودند. قبل از آن نقشه توپوگرافی و سپس نقشه زمین شناسی در مقیاس ۵۰۰۰: ۱ تهیه شده بود. در حین مطالعات زمین شناسی تعداد ۱۵ نمونه جهت مطالعات پتروگرافی برداشت و مطالعه گردیده است. نمونه های لیتوژئوشیمیایی به صورت لبپری و به وزن

پس از آماده سازی، نمونه ها به آزمایشگاه Amdel ارسال گردید و آنالیز ۴۴ عنصری بر روی آنها انجام شد. با حصول نتایج، پردازش های آماری بر روی نتایج آغاز گردید و سپس محل های مناسب برای حفر ترانشه، طراحی شد. پس از آن ترانشه های طراحی شده، حفر و برداشت های زمین شناسی مقاطع و نمونه برداری ار آنها انجام گردید. مجدداً نمونه ها به آزمایشگاه زرکاوان البرز ارسال و مورد آنالیز ۱۰ عنصری قرار گرفتند. تعداد ۱۰ نمونه نیز جهت انجام مطالعات XRD و بررسی آلتراسیون به آزمایشگاه مربوطه فرستاده شد.

در انتها با پردازش داده ها و تلفیق کلیه اطلاعات سه زون کانی سازی معرفی گردید که ادامه عملیات اکتشاف تکمیلی در زون A توسط این مهندسین مشاور پیشنهاد گردیده است. در این زون یک کانی سازی پلی متال رگه ای سرب و روی وجود دارد که طلا در آن به عنوان محصول جانبی محسوب می شود. گاهی طلا همراه با ماده معدنی و گاهی در حواشی زون کانی سازی غنی شدگی نشان می دهد.

عنوان مطلب

فهرست مطالب

شماره صفحه

فصل اول – کلیات

1-1	۱–۱– مقدمه
1-1	۱-۲- موقعیت جغرافیایی
1-7	۱–۳– آب و هوا
1-7	۱-۴- تاریخچه مطالعات
1-8	۱–۵– اهداف و روش کار
1-Y	۱–۶- زمین شناسی عمومی ناحیه مورد مطالعه
1-9	۱-۷- بحثی پیرامون منشأ کانسار طلای گندی

فصل دوم– زمین شناسی منطقه

۲–۱ – مقدمه	۲-۱
۲-۲ – موقعیت زمین شناسی	۲-۱
۲-۳- چینه شناسی ناحیه مورد مطالعه	۲-۲
۲-۳-۱-رديف دگرگونه پالئوزوئيک	۲-۲
۲-۳-۲ ردیف سنگ نهشتههای کرتاسه پسین	۲-۳
۲–۳– ۳– واحد های سنگی مربوط به ائوسن از دوران سنوزوئیک	۲-۹
۲-۳- ۴ واحد های مربوط به پلیوسن و کواترنر	۲-۱۱
۲-۳-۵- سنگهای آذرین نیمه مغاکی	۲-۱۳
۲-۴- دگرسانی در محدوده مورد مطالعه	2-1F
۲-۵- زمینشناسی ساختمانی ناحیه مورد مطالعه	۲-1۴
۲-۶- زمینشناسی اقتصادی ناحیه مورد مطالعه	7-18

فصل سوم– نمونه برداری، آماده سازی و آنالیز

۳-۱	۲–۱ – مقدمه
۳-۱	۲-۳ - روش بهینه سازی طراحی شبکه
۳-۱۱	۳-۳- نمونه برداری
٣-1٣	۳-۴- آماده سازی و آنالیز نمونه ها
٣-14	۳–۵- بررسی خطای آنالیز
٣-14	- روش گرافیکی تامسون- هوارث

فصل چهارم – پردازش داده ها

F-1	۴–۱– دادهپردازی
۴–۱	۴–۱–۱– جایگزینی دادههای سنسورد
F - T	۴-۱-۲- پردازشهای آماری دادهها (روشها)
۴–۳	-۱- محاسبه مقدار زمینه عناصر
۴–۳	-۲- روش تهیه نقشه آنومالیها
۴-۴	–۳– واریو گرافی

'- پردازش آماری دادهها	.7-4
۱ – ۱ – نقش سنگ بستر	۲-۴
'-۲- رده بندی نمونه ها بر اساس جوامع سنگی	.7-4
'-۳- بررسی پارامترهای آمار توصیفی	.7-4
'-۴- ترسيم هيستوگرامها و شرح آنها	.7-4
'-۵- ترسیم باکس پلات ها	.7-4
'-۶- بررسی ضرایب همبستگی	.7-4
محاسبه ضریب همبستگی و بررسی اعتبار آن ها	-1-
مقایسه چند روش در محاسبه ضریب همبستگی	-۲-
۲-۷- آنالیز خوشه ای داده ها (دندروگرام)	.7-4
'-۸- آنالیز فاکتوری داده ها	.7-4
'-۹- محاسبه مشخصه های ژئوشیمیایی و شاخص های جمعی	.7-4
۱- پردازش های زمین آماری	.٣_۴
۱-۱- واریو گرافی	.٣_۴
'- شرح نقشه آنومالیهای منطقه	.4_4
۱-۱- آنومالی نقره	.4-4
۲-۲- آنومالی آرسنیک	4-4
۲-۳- آنومالی طلا	4-4
۲-۴- آنومالی باریم	4-4
-۵- آنومالی کادمیم	4-4
۱-۶- آنومالی مس	4-4
۲-۷- آنومالی مولیبدن	4-4
۱-۸- آنومالی سرب	4-4
'-۹- آنومالی آنتیموان	.4_4
۱۰-۱۰- آنومالی روی	.4_4
۱۴-۱۴- فاکتور دوم	4-4
۱–۱۵– فاکتور هشتم	.4-4
۱-۹۶- شرح آنومالی اندیس های جمعی	.4_4
۱-۱۶-۱ اندیس جمعی ACPSSZ	4-4
۲-۱۶-۲- اندیس جمعی AACCM	4-4
۰- بررسی آلتراسیون منطقه و ارتباط آن با کانی سازی	۵-۴
<i>۱-۱-</i> شاخص سریسیتی	۵-۴
۲-۲- شاخص کلریتی	۵-۴
۵–۳– شاخص قلیایی	۵-۴
۵-۴- شاخص هاشی موتو و هاشی موتو تغییر یافته	۵-۴
۵-۵- شاخص هاشی گوشی	۵-۴
۵-۶- شاخص اسپیتز- دارلینگ	۵-۴
/- موقعیت سطح فرسایش نسبت به توده کانساری	-9-4
۱- شرح نقشه اولویت بندی آنومالی ها	۴_۷

فصل پنجم – تلفیق زمین شناسی و مطالعات لیتوژئوشیمیایی

۵-۱	۵–۱– مقدمه
۵-۱	۵-۲- تلفیق زمین شناسی و لیتوژئوشیمی با داده های خام
۵-۴	۵-۳- تلفیق زمین شناسی و لیتوژئوشیمی با داده های شاخص غنی شدگی
۵-۶	۵-۴- پردازش آماری زون کانی سازی اولویت اول
۵–۹	۵–۵– پردازش آماری زون کانی سازی اولویت دوم
۵–۱۲	۵-۶- آنالیز ${f XRD}$ و تلفیق آن با نتایج زمین شناسی و ژئوشیمی
۵–۱۵	۵–۷– تلفیق مقاطع زمین شناسی و آنومالی های لیتوژئوشیمی

فصل ششم- حفريات

۶-۱		۶-۱- طراحی مقدماتی ترانشه
8-1		۶-۲- حفریات انجام شدہ
9-4		۶-۲-۱ - ترانشه شماره ۱
۶-۵		۶-۲-۲- ترانشه شماره ۲
9-Y		۶-۲-۳- ترانشه شماره ۳
8-11		۶-۲-۴- ترانشه شماره ۴
8-11		۶-۲-۵- ترانشه شماره ۵
8-11		۶-۲-۶- ترانشه شماره ۶
۶-۱۵		۶-۲-۷- ترانشه شماره ۷
۶-۱۵		۶-۲-۸- ترانشه شماره ۸
۶-۱۵		۶-۲-۹- ترانشه شماره ۹
۶-۱۹		۶-۲-۱۰ ترانشه شماره ۱۰
8-21		۶-۲-۱۱- ترانشه ۱۱
8-22		۶-۲-۲۲ ترانشه۱۲
۶-۲۳		۶-۲-۱۳ ترانشه ۱۳
۶-۲۳		۶-۲-۱۴ ترانشه ۱۴
۶-۲۷		۶-۲-۱۵- ترانشه ۱۵
۶-۲۷		۶-۲-۱۶ ترانشه ۱۶
۶-۲۷		۶-۲-۱۷- ترانشه ۱۷
۶-۲۷		۶-۲-۱۸ ترانشه ۱۸
	فصل هفتم- نتیجه گیری و پیشنهادات	
Υ-١		۷-۱- نتیجه گیری
Y-۴		۲-۲- پیشنهادات

فهرست اشکال و نمودارها

شماره صفحه	عنوان شکل
1-1	شکل شماره ۱-۱ موقعیت منطقه مورد مطالعه و راههای دسترسی به آن
۲-۳	شکل شماره ۱-۲- نقشه آنومالیهای طلای سوسنوار و گندی بر اساس مطالعات کارشناسان چینی
	شکل شماره ۱-۳- نقشه آنومالی طلای سوسنوار بر اساس مطالعات کارشناسان طرح اکتشاف سراسری
$1-\omega$	و محدوده ارائه شده برای مطالعات ۱:۵۰۰۰
۱–۸	شکل شماره ۱-۴- محدوده مورد مطالعه بر روی نقشه زمین شناسی ۱:۲۵۰۰۰۰ ترود
~ ~	شکل شماره ۳-۱- محدوده آنومالی های طلا در فاز ۱:۲۰/۰۰۰ و موقعیت نمونههای طراحی شده در
1 - 1	روش بهینهسازی
٣_٣	شکل شماره ۳-۲- نقشه محدودههای جدید آنومالیهای طلا حاصل از ترسیم عیارهای بدست آمده از
1 - 1	آنالیز نمونههای برداشت شده در روش بهینهسازی
٣-٨	شکل شماره ۳-۳- نقشه آنومالیهای حاصل از ترسیم عیار طلا در بخش کنسانتره نمونههای کانی
	سنگين
٣-٩	شکل شماره ۳-۴- نقشه پراکندگی مقادیر بیش از ۲۰ در نسبت (Au(h)/Au(g
٣-١٠	شکل شماره ۳–۵– دندروگرام حاصل از آنالیز خوشهای بر روی مجموعه دادههای کانیسنگین عناصر
	سرب،روی و مس، همراه با باریت، اکسید و هیدروکسیدهای آهن، طلای ژئوشیمی و طلای کانی سنگین
٣ -1 ۲	شکل شماره ۳-۶- نقشه طراحی شبکه نمونه برداری لیتوژئوشیمیایی
۳-۱۵	نمودار شماره ۳-۷- خطای آنالیز نقره با استفاده از روش گرافیکی تامسون- هوارث
۳-۱۶	نمودار شماره ۳–۸- خطای آنالیز آرسنیک با استفاده از روش گرافیکی تامسون- هوارث
۳-۱۶	نمودار شماره ۳-۹- خطای آنالیز طلا با استفاده از روش گرافیکی تامسون- هوارث
۳-۱۷	نمودار شماره ۳–۱۰- خطای آنالیز بیسموت با استفاده از روش گرافیکی تامسون- هوارث
۳-۱۷	نمودار شماره ۳–۱۱– خطای آنالیز مس با استفاده از روش گرافیکی تامسون– هوارث
۳-۱۸	نمودار شماره ۳–۱۲– خطای آنالیز مولیبدن با استفاده از روش گرافیکی تامسون– هوارث
۳-۱۸	نمودار شماره ۳–۱۳– خطای آنالیز سرب با استفاده از روش گرافیکی تامسون- هوارث
۳-۱۹	نمودار شماره ۳–۱۴– خطای آنالیز آنتیموان با استفاده از روش گرافیکی تامسون- هوارث
۳-۱۹	نمودار شماره ۳–۱۵- خطای آنالیز قلع با استفاده از روش گرافیکی تامسون- هوارث
۳-۲۰	نمودار شماره ۳–۱۶– خطای آنالیز روی با استفاده از روش گرافیکی تامسون- هوارث
۴-۵	شکل شماره ۴-۱- پارامترهای اصلی واریوگرام در حالت کلی
۴_٩	شکل شماره ۴-۲- نمودار توزیع فراوانی نمونه های لیتوژئوشیمیایی بر اساس تعداد جوامع سنگی
۴_۹	شکل شماره ۴–۳- نمودار توزیع فراوانی نمونه های تک سنگی
۴-۱۰	شکل شماره ۴-۴- نمودار توزیع فراوانی نمونه های دو سنگی
۴-۱۰	شکل شماره ۴–۵- نمودار توزیع فراوانی نمونه های سه سنگی
4-12	شکل شماره ۴-۶- مقادیر زمینه عناصر در محیطهای سنگی منطقه
۴-۱۵	شکل شماره ۴-۷- هیستوگرام داده های شاخص غنی شدگی قبل و بعد از حذف داده های خارج از رده
4-18	شکل شماره ۴-۸- هیستوگرام داده های شاخص غنی شدگی قبل و بعد از حذف داده های خارج از رده
4-11	شکل شماره ۴-۹- هیستوگرام داده های شاخص غنی شدگی قبل و بعد از حذف داده های خارج از رده
4-18	شکل شماره ۴-۱۰- هیستوگرام داده های شاخص غنی شدگی قبل و بعد از حذف داده های خارج از رده
4-19	شکل شماره ۴–۱۱– هیستوگرام داده های شاخص غنی شدگی قبل و بعد از حذف داده های خارج از رده

اکتشاف لیتوژنوشیمیایی منطقه طلا دار سوسن وار

ی شمارہ ۴-۱۲ - باکس پلات عناصر Ag, As, Au, Ba, Cd, Cu پس از همگن سازی	شكل
ی شماره ۴–۱۳ – باکس پلات عناصر Mo, Pb, S, Sb, Tl, W پس از همگن سازی	شكل
ل شماره ۴–۱۴ – باکس پلات عنصر Zn پس از همگن سازی	شكل
ل شماره ۴–۱۵ – دندرو گرام داده های شاخص غنی شدگی به روش Ward	شكل
ی شماره ۴–۱۶- نمودارهای واریوگرافی غیرجهتی عناصر Ag,As,Au,Ba,Cd,Cu در محدوده	شكل
د مطالعه	مورد
ی شماره ۴–۱۷- نمودارهای واریوگرافی غیرجهتی عناصر Mo,Pb,S,Sb,Tl,W در محدوده مورد	شكل
Az	مطال
ر شماره ۴−۱۸- نمودارهای واریوگرافی غیرجهتی عنصر Zn در محدوده مورد مطالعه	شكل
ی شماره ۴–۱۹- نمودارهای واریوگرافی جهتی عناصر Ag,As,Au,Ba,Cd,Cu در محدوده مورد	شكل
4z	مطال
ی شماره ۴−۲۰- نمودارهای واریوگرافی جهتی عناصر Mo,Pb,S,Sb,Tl,W در محدوده مورد	شكل
عه	مطال
ی شماره ۴–۲۱- نمودارهای واریوگرافی جهتی عنصر Zn در محدوده مورد مطالعه	شكل
ے شمارہ ۴–۲۲– آنومالی های دادہ خام Ag	شكل
ں شمارہ ۴–۲۳– آنومالی های شاخص غنی شدگی Ag	شكل
ل شماره ۴–۲۴– آنومالی های داده خام As	شكل
ل شماره ۴–۲۵– آنومالی های شاخص غنی شدگی As	شكل
ے شمارہ ۴–۲۶– آنومالی های دادہ خام Au	شكل
ے شمارہ ۴–۲۷– آنومالی های شاخص غنی شدگی Au	شكل
ل شماره ۴–۲۸– آنومالی های داده خام Ba	شكل
ں شمارہ ۴–۲۹– آنومالی های شاخص غنی شدگی Ba	شكل
ل شماره ۴–۳۰– آنومالی های داده خام Cd	شكل
ل شماره ۴–۳۱– آنومالی های شاخص غنی شدگی Cd	شكل
ل شماره ۴–۳۲– آنومالی های داده خام Cu	شكل
ل شماره ۴–۳۳– آنومالی های شاخص غنی شدگی Cu	شكل
ر شماره ۴−۳۴− آنومالی های داده خام Mo	شكل
ل شماره ۴−۳۵- آنومالی های شاخص غنی شدگی Mo	شكل
ی شماره ۴–۳۶- آنومالی های داده خام Pb	شكل
ل شماره ۴-۳۷- آنومالی های شاخص غنی شدگی Pb	شكل
ے شمارہ ۴–۳۸– آنومالی های دادہ خام Sb	شكل
ے شمارہ ۴–۳۹– آنومالی های شاخص غنی شدگی Sb	شكل
ے شمارہ ۴-۴۰- آنومالی های دادہ خام Zn	شكل
ں شمارہ ۴–۴۱– آنومالی های شاخص غنی شدگی Zn	شكل
ل شماره ۴-۴۲- آنومالی های Factor 2 (عناصر Sb ،S ،Pb ،Cd ،Ag و Zn) که کم	شكل
ل شماره ۴–۴۲- آنومالی های Factor 8 (عناصر As، Au و Cu) د	شكل
ل شماره ۴-۴۴- آنومالی های ACPSSZ (عناصر Sb ،S ،Pb ،Cd ،Ag و Zn) که Sb ،S ،Pb ،Cd ،Ag	شكل
ل شماره ۴–۴۵- آنومالی های AACCM (عناصر Co ،Au ،As و Mo و Mo) ک	شكل
ی شماره ۴-۴۶- نحوه توزیع و پراکندگی شاخص سریسیتی	شكل

۴-۵۸	شکل شماره ۴-۴۷- نحوه توزیع و پراکندگی شاخص کلریتی
4-29	شکل شماره ۴-۴۸- نحوه توزیع و پراکندگی شاخص قلیایی
4-8.	شکل شماره ۴-۴۹- نحوه توزیع و پراکندگی شاخص هاشی موتو
4-8.	شکل شماره ۴-۵۰- نحوه توزیع و پراکندگی شاخص هاشی موتو تغییر یافته
4-87	شکل شماره ۴-۵۱- نحوه توزیع و پراکندگی شاخص هاشی گوشی
4-87	شکل شماره ۴-۵۲- نحوه توزیع و پراکندگی شاخص اسپیتز- دارلینگ
4-84	شکل شماره ۴-۵۳- آنالیز خوشه ای بین متغیرهای عنصری و شاخص های آلتراسیون
۴-۶۵	شکل شماره ۴-۵۴- نحوه توزیع آنومالیهای PES (سطح فرسایش کنونی)
۴-۶۵	شکل شماره ۴–۵۵- موقعیت شماتیک سطح فرسایش کنونی و نحوه کانیسازی
4-81	شکل شماره ۴–۵۶- موقعیت آنومالی ها و رتبه بندی آنها بر روی نقشه توپوگرافی
۵–۳	شکل شماره ۵–۱– تلفیق نقشه زمین شناسی و لیتوژئوشیمی با داده های خام
$\Delta - \Delta$	شکل شماره ۵-۲- تلفیق نقشه زمین شناسی و لیتوژئوشیمی با داده های شاخص غنی شدگی
$\Delta - Y$	شکل شماره ۵-۳- زون کانی سازی اولویت اول همراه با نمونه های جای گرفته در آن
۵–۹	شکل شماره ۵–۴– دندوگرام مربوط به زون کانی سازی اولویت اول
$\Delta - 1 \cdot$	شکل شماره ۵-۵- زون کانی سازی اولویت دوم همراه با نمونه های جای گرفته در آن
$\Delta - 1 r$	شکل شماره ۵-۶- دندوگرام مربوط به زون کانی سازی اولویت دوم
۵-۱۶	شکل شماره ۵- ۲- مقطع زمین شناسی 'AA و نحوه تغییرات عناصر Zn ،Pb ،Au و Cu در آن
$\Delta - 1 V$	شکل شماره ۵- ۸- مقطع زمین شناسی 'BB و نحوه تغییرات عناصر Au ،Pb ،Au و Cu در آن
۶-۲	شکل شماره ۶–۱– طراحی مقدماتی مسیر حفر ترانشه بر اساس نتایج بدست آمده
۶-۵	شکل شماره ۶-۲- مسیر ترانشه های حفر شده در منطقه مورد مطالعه
۶-۶	شکل شماره ۶–۳- مقطع زمین شناسی ترانشه شماره ۱
۶–۹	شکل شماره ۶–۴– مقطع زمین شناسی ترانشه شماره ۲
۶-۱۰	شکل شماره ۶–۵– مقطع زمین شناسی ترانشه شماره ۳
8-12	شکل شماره ۶–۶– مقطع زمین شناسی ترانشه شماره ۴
8-13	شکل شماره ۶–۲– مقطع زمین شناسی ترانشه شماره ۵
8-14	شکل شماره ۶–۸– مقطع زمین شناسی ترانشه شماره ۶
8-18	شکل شماره ۶–۹– مقطع زمین شناسی ترانشه شماره ۷
۶-۱۷	شکل شماره ۶–۱۰– مقطع زمین شناسی ترانشه شماره ۸
۶-۱۸	شکل شماره ۶–۱۱– مقطع زمین شناسی ترانشه شماره ۹
۶-۲۰	شکل شماره ۶–۱۲– مقطع زمین شناسی ترانشه شماره ۱۰
8-77	شکل شماره ۶–۱۳– مقطع زمین شناسی ترانشه شماره ۱۱
8-74	شکل شماره ۶–۱۴– مقطع زمین شناسی ترانشه شماره ۱۲
۶-۲۵	شکل شماره ۶–۱۵– مقطع زمین شناسی ترانشه شماره ۱۳
8-78	شکل شماره ۶–۱۶– مقطع زمین شناسی ترانشه شماره ۱۴
۶ -۲۸	شکل شماره ۶–۱۷– مقطع زمین شناسی ترانشه شماره ۱۵
۶ −۲٩	شکل شماره ۶–۱۸– مقطع زمین شناسی ترانشه شماره ۱۶
۶-۳۰	شکل شماره ۶–۱۹– مقطع زمین شناسی ترانشه شماره ۱۷
8-31	شکل شماره ۶–۲۰- مقطع زمین شناسی ترانشه شماره ۱۸

فهرست جداول وان حدما

شماره صفحه	عنوان جدول
 (/	جدول شماره ۳-۱- نتایج آنالیز طلای بخـش کنـسانتره نمونـه هـای کـانی سـنگین و مقایـسه آن بـا نتـایج
Y — Y	ژئ <i>و</i> شیمی
۳-۱۳	جدول شماره ۳-۲- کاربرگ های نمونه برداری استاندارد بکار رفته در پروژه
۳-۱۴	جدول شماره ۳-۳- روش آنالیز و حد حساسیت برای عناصر مختلف
۴-۲	جدول شماره ۴–۱– عناصر حاوی داده های سنسورد، تعداد، درصد و مقادیر جایگزین آنها
۴-۳	جدول شماره ۴-۲- مقادیر زمینه دادههای خام و شاخص غنیشدگی
۴-۸	جدول شماره ۴-۳- علائم اختصاری و مقادیر زمینه عناصر در محیطهای سنگی نمونه های لیتوژئوشیمیایی
<u>к</u> , ш	جدول شماره ۴-۴- پارامترهای آمار توصیفی حاصل از پردازش داده های خام پـس از جـایگزینی دادههـای
1-11	سنسورد
4-24	جدول شماره ۴-۵- کد نمونه های غنی شده به همراه میزان غنی شدگی عناصر
۴-۲۷	جدول شماره ۴-۶- ماتریس ضرایب همبستگی
۴-۳۲	جدول شماره ۴-۷- نتایج مربوط به محاسبات فاکتوری
4-47	جدول شماره ۴- ۸- مشخصه های واریوگرام های غیرجهتی و جهتی
$\Delta - \lambda$	جدول شماره ۵-۱- پارامترهای آماری اولویت اول
$\Delta - \lambda$	جدول شماره ۵-۲- ضرایب همبستگی بین عناصر مورد بررسی در زون کانی سازی اولویت اول
۵-۱۱	جدول شماره ۵-۳- پارامترهای آماری اولویت دوم
۵-۱۱	جدول شماره ۵-۴- ضرایب همبستگی بین عناصر مورد بررسی در زون کانی سازی اولویت دوم
۵-۱۴	جدول شماره ۵-۵- نتایج آنالیز XRD به همراه نوع لیتولوژی، آنالیز شیمیایی عناصر و مختصات نمونه ها
۶-۳	جدول شماره ۶–۱- مختصات ابتدا و انتهای مسیر حفر ترانشه های طراحی شده
۶-۴	جدول شماره ۶–۲ مختصات و مشخصات ترانشه های حفر شده

فهرست تصاوير

شماره صفحه	عنوان تصوير
	عکس شماره ۲-۱- تصویری از شیستهای مسکویت و کوارتزدار که بهدلیل فراوانی رگههای سیلیسی و
۲-۳	پخش شدن واریزههای آن بر روی شیستها بهرنگ سفید دیده میشود و در اثر گسل باختر کارگاههای
	زیرزمینی کندهشکنی و قارونی بر روی واحد Ku ^{ml1} (کرتاسه پسین) رانده شده است. جهت رانـدگی از
	شیست به سمت سنگآهک است.
	عکس شماره ۲-۲- تصویری از سنگآهکهای آرژیلی – سنگ آهک و شیل های آهکی کرتاسه مربوط
$ au_{-\Delta}$	به واحد سنگی ${ m K_u}^{ m lml}$ که در اثر عملکرد گسل تراستی پرشیب تبرکوه بر روی واحدهای ولکانیکی ائوسن
	رانده شده است (دید به شمال و شمال باختری).
۲-۸	عکس شماره ۲- ۳- تصویری از واحد ماسهای و ماسهسنگ کنگلومرایی $\mathrm{K_u}^{\mathrm{sc}}$ همراه با رگه و رگچههـای
	هماتیتی – کلسیتی که بعضاً عیار طلا درآنها بالا می باشد.
۲-۱۳	عکس شماره ۲-۴- تراورتن های شمال سنجو در کنتاکت با واحد های ولکانیک ائوسـن (دیـد بـه سـمت
	شمال) از سنجو
۲-۱۷	عکس شماره ۲-۵- وجود رگههای گالن همراه با باریت که درز و شکافهای ایجاد شده در سنگ میزبان
	کربناته را پر کرده است. منشا این کانهزایی محلول های هیدروترمالی حاصل از توده های نفوذی اسـیدی
	بوده است.
٣-١٣	عکس شماره ۳-۱- مشخص نمودن ایستگاه های نمونه برداری با سنگ چین، اسپری، قلاب آهنی و پلاک
	فلزى
۶-۲	عکس شماره ۶–۱– قسمت طلا دار ترانشه دوم در متراژ ۶/۵ الی ۸/۵ با بیش از ۱ گرم بر تن طلا
۶-۸	عکس شماره ۶-۲- قسمت پر عیار طلا در متراژ ۱۳/۷ الی ۱۶/۶ (با استناد به نمونه برداری مرحله اول
	ترانشهها)
۶-۸	عکس شماره ۶–۳- بخش اصلی تمرکز طلا در متراژ ۱۴/۷ الی ۱۵/۶(با استناد به نمونه برداری مرحله
	دوم)
8-19	عکس شماره ۶–۴- فرسایش پوست پیازی در گدازه های آندزیتی
۶-۱۹	عکس شماره ۶-۵- نمایی از رگه و رگچه های کلسیتی عقیم در بخش شرقی محدوده مورد مطالعه
8-21	عکس شماره ۶–۶- نمایی از بخش نسبتاً غنی شده طلا در متراژ ۵ تا ۶ ترانشه شماره ۱۱

فصل اول کلیات

1-1- مقدمه

بر اساس قرارداد شماره ۴۹۷-۸۳ مورخ ۸۳/۱۱/۱۱، خدمات مهندسی و مشاوره پروژه عملیات اکتشاف طلا در منطقه سوسنوار در استان سمنان توسط سازمان زمین شناسی و اکتشافات معدنی کشور به شرکت مهندسین مشاور کاوش کانسار واگذار گردید.

کارشناسان این مهندسین مشاور در راستای اجرای مفاد مندرج در شرح خدمات، اقدام به جمع آوری اطلاعات نموده و با انجام مطالعات و برداشتهای صحرایی و زمین شناسی، تحلیل و پردازش دادهها و تلفیق کلیه نتایج و اطلاعات سعی کردهاند، به اهداف مورد نظر پروژه دست یابند.

1-2- موقعیت جغرافیایی

محدوده مورد بررسی با وسعت حدود ۵ کیلومتر مربع، در بخش میانی نقشه زمین شناسی ۰۰۰ /۱:۲۵۰ چهار گوش ترود و در محدوده نقشه زمین شناسی ۰۰۰ /۱:۱۰۰ چهار گوش معلمان قرار دارد.

این محدوده در فاصله ۵۵۰ کیلومتری شرق تهران، ۱۲۰ کیلومتری جنوب جنوب شرق دامغان و ۷ کیلومتری شمال معلمان و در شمال روستای سوسنوار واقع شده و روستای متروکه سنجو نیز در درون آن قرار گرفته است. محدوده مورد مطالعه بین طول جغرافیایی "۱۸'۳۱°۵۴ الی "۲۴'۳۴°۵۴ شرقی و عرض جغرافیایی ۱۶'۴۹" الی "۵۱'۵۱ شمالی واقع شده است (شکل شماره ۱-۱).

برای دسترسی به محدوده مورد مطالعه میتوان از جاده آسفالته دامغان- جندق استفاده نمود. روستای معلمان در فاصله ۱۲۰ کیلومتری جنوب دامغان قرار دارد. با استفاده از یک جاده خاکی که قبل از ورود به آبادی و از کنار پمپ بنزین معلمان به سمت شمال منشعب میشود میتوان به روستای سوسنوار رسید. این مسیر در ادامه دسترسی به روستای سنجو و از آنجا به سمت شمال به محدوه کارهای معدنی قدیمی را امکانپذیر میسازد. روستای سنجو در اصل محل اسکان معدنکاران قدیم بوده و به عبارتی دیگر یک شهرک معدنی بوده، که در حال حاضر متروکه شده است. ومستان

واستخريشت قائم شهر امل 0 درويش و ديباج)شاهرود رييس كلا مرزيكل بائينهولار طزره ارست چالو خالخيل وبان خوش رود شیر گاہ كلوكاه SU ورزكه وكياسر تلمادره Taplia زيرآبع محمدآباذن دامغان % اکره گلیران، برم قلعه يايين سيدآباد فولادمطم يلور بل سفيد آلاشت بايجان -دروار امير آباد فرات ميدوه گزنگ 5671 ملح آباد م حاشم ، لرورة و جماران مار جمند. فيروز كوه شهميرزادي جام جهان آباد دماوند گورسفید رانزا مهدی شهر ىرندە يزدان آباد خورس ہ مطارى دوزهيد ٥٦ب بل دشت لوه افغان المنان افتر ille وكيلا مهاسا استكاد آبكر ماركوه علا، ركن آباد م سر فه دشت شنی مودآباد 0001 چاهه كرم آبسرد . ولاسجرد ميانانك چشمه کز لرود كوه بابااحمد لاهورد 0 معدن Clal all چاه بنه تیه و م گندی کوه دختر چاہ شیرین و چاه مفانيه 6 Pr بيدستان اگزرمسار حسين آباد • • معلمان كهن آباد كردوان كوه كيتجا (سياه كوه)]

شکل شماره ۱-۱ موقعیت منطقه مورد مطالعه 🚃 و راههای دسترسی به آن

۱-۳- آب و هوا

بهطور کلی آب و هوای منطقه معلمان گرم و خشک و از نوع کویری تا نیمه کویری است. این منطقه بعلت مجاورت با مناطق کویری و کوهستانی، همواره با تغییرات فشار هوا روبرو بوده و تحت تأثیر وزش بادهای محلی، بادهای کویری و بادهای مرطوب و بارانزای غربی قرار دارد. حداقل دمای ناحیه ۶- درجه سانتی گراد، بالاترین دمای ناحیه متجاوز از ۴۰ درجه سانتی گراد و میزان نزولات جوی بطور متوسط ۱۴۷ میلیمتر گزارش شده است.

1-4- تاريخچه مطالعات

بهدنبال مطالعات انجام شده توسط کارشناسان چینی در ۲۶ برگه ژئوشیمی محور سمنان – تربت حیدریه، محدوده مورد مطالعه نیز بعنوان بخشی از برگه ۱:۱۰۰/۰۰۰ معلمان مورد مطالعات اکتشافی سیستماتیک در فاز ناحیهای قرار گرفت. بر اساس این مطالعات آنومالی سوسنوار با غنیشدگی نسبی در عناصر طلا، سرب و روی و باریم شناسایی گردید. این محدوده در شمال غرب و غرب محدوده طلای گندی واقع شده است (شکل شماره ۱–۲)

شکل شماره ۱-۲- نقشه آنومالیهای طلای سوسنوار و گندی بر اساس مطالعات کارشناسان چینی

سپس در سال ۱۳۸۰ توسط طرح اکتشاف سراسری، مطالعات اکتشافی فاز ۱۱:۲۰/۰۰۰ بر روی آنومالی یاد شده، انجام پذیرفت. در این مطالعات در کل ۱۷۹ نمونه ژئوشیمیایی، ۳۱ نمونه کانی سنگین و ۵۱ نمونه مینرالیزه برداشت و آنالیز شدند همچنین ۵ چاهک و یک ترانشه اکتشافی نیز حفر و ۳۴ نمونه مینرالیزه از آنها برداشت گردید. بر اساس نتایج حاصله محدوده آنومالی کوچکتر شده و در نهایت گسترهای به وسعت ۵ کیلومتر مربع از نظر کانیسازی طلا و عناصر همراه حائز اهمیت شناخته شد (شکل شماره ۱–۳).

در نهایت در سال ۱۳۸۵، از طرف طرح تلفیق لایه های اطلاعاتی اکتشافی، گستره یاد شده برای انجام مطالعات لیتوژئوشیمیایی در مقیاس ۱:۵۰۰۰ به شرکت مهندسین مشاور کاوش کانسار واگذار گردید. گزارش حاضر نتایج حاصل از این مطالعات را دربر می گیرد.

علاوه بر مطالعات سیستماتیک و ناحیهای که در این محدوده اجرا شده است، تعداد تقریباً زیادی دهانه ها، تونلها و چاههای استخراجی سرب و روی وجود دارد که نشاندهنده تاریخچه کهن معدنی در منطقه مورد مطالعه می باشد. این معادن معروف به معادن خانجار رشم یا سوسن وار می باشند. مرکز فعالیتهای معدنی آن زمان نیز روستای سنجو بوده که در حال حاضر متروکه می باشد. در زیر مختصری از مشخصات معدن مذکور برگرفته از کتاب "کانسارهای سرب و روی در ایران" تألیف منصور قربانی(۱۳۷۹–سازمان زمین شناسی، ص ۴۵۵–۴۵۷) آورده شده است: "کانسار در دامنه جنوبی رشته کوههای ترود- چاه شیرین و در باختر دامنه جنوبی رشته کوه دوگوش، در بلندای میانگین ۱۴۵۰ متری از سطح دریا است. پروانه بهره برداری از این معدن در سال ۱۳۳۵ به مدت ۲۵ سال به شرکت کیمیای پارس واگذار شد. در سال ۱۳۵۷ بهره برداری از معدن تا سال ۱۳۶۰ به شرکت فریک منتقل شد و در طول سال بعد، عملیات اکتشافی توسط بنیاد شهید انجام گردید که به ظاهر به نتیجه مثبتی نرسیده است. بهره برداری از معدن به روش اتاق و پایه در ۵ کارگاه انجام گرفته است و روزانه نزدیک به ۲۰ تا ۲۰ تن سنگ معدنی با عیار ۶ تا ۷ درصد سرب بهره برداری و در کارخانه تغلیظ، پرعیار می شده است. محصول کنسانتره دربرگیرنده حدود ۶۰ درصد سرب، ۴ درصد روی و ۱۰۰۰ گرم در تن نقره ثبت شده است. در این

<mark>۱ - کارگاه سنجو(سوسن وار</mark>): در این کارگاه دو حلقه چاه به ژرفای حدود ۴۰ -۳۰ متر و چند ترانشه و گزنگ و دو تونل حفر شده است. طول تونل اصلی حدود ۱۵۰ متر است.

۲<u>- کارگاه کنده شکنی</u>: در حدود ۲۵۰ متری شمال کارگاه سنجو قرار گرفته و دارای دو تونل و یک چاه کم عمق و گزنگ است. طول تونل اصلی حدود ۵۰ متر است و درون آن کارهای معدنی بصورت چاه، دویل و گزنگ در جهات مختلف انجام شده است.

<u>۳</u> - کارگاه قارونی: در حدود ۱۵۰ متری شمال کارگاه کنده شکنی و دارای یک چاه به عمق حدود ۳۰ متر و یک تونل بزرگ است. دهانه تونل ۳/۵ متر عرض و ۴/۵ متر بلندا دارد و پس از حدود ۱۰ متر به سه کارگاه شاخه می شود. در این محل همچنین ترانشه های زیادی در سطح زمین وجود دارد.

۴- کارگاه لوتی: در فاصله حدود یک کیلومتری شمال خاور کارگاه قارونی جای دارد و دارای سه تونل است. تونل نخست به درازای ۳۰ متر و تونلهای دوم و سوم که در دو افق متفاوت حفر شده اند توسط گزنگ و دویلهایی به یکدیگر متصل می شوند. در سطح زمین چندین ترانشه و چاه دیده می شوند.

<mark>۵- کارگاه زاهد:</mark> در فاصله حدود ۵۰۰ متری جنوب کارگاه لوطی جای دارد و دارای یک چاه به عمق ۵۰ تا ۶۰ متر و دو تونل است. درازای تونل اصلی در حدود ۱۸۰ متر است.

سنگ درونگیر، سنگهای آهکی کرتاسه است. با توجه به آنچه که در کارگاه های استخراجی دیده می شود ماده معدنی در آهکهای اوربیتولین دار و آهکهای مارنی ماسه ای جای دارد. همچنین آغشتگی هایی نیز در آهکهای ماسه ای دیده شده است. روند گسلها و درزه ها شمال خاور - جنوب باختر و همچنین شمال باختر - جنوب خاور است و کارهای معدنی در این راستاها مشاهده می شود. کانه زایی در پیکر پر شدگی درز و شکاف و فضاهای خالی صورت گرفته و بصورت رگچه های منفرد و متقاطع، کیسه ای، افشان و همچنین بصورت سیمان در پیرامون قطعات کوچک آهکی دیده می شود. ژنز ماده معدنی بصورت هیدروترمال و شاید در رابطه با فازهای آلپی(احتمالاً لارامید و یا جوانتر) بوده است.

ماده معدنی بصورت گالن همراه با سروزیت، آنگلزیت، مالاکیت، پیریت، بورنیت، باریت و کلسیت است. عیار ماده معدنی با توجه به کارهای اکتشافی که توسط بنیاد شهید انجام شده نزدیک ۲ درصد است. درباره میزان ذخیره این معدن با داده های موجود نمی توان اظهار نظر قطعی کرد."

شکل شماره ۱-۳- نقشه آنومالی طلای سوسنوار بر اساس مطالعات کارشناسان طرح اکتشاف سراسری و محدوده ارائه شده برای مطالعات ۱:۵۰۰۰

1-5- اهداف و روش کار

بهمنظور انجام خدمات مهندسی و مشاوره پروژه عملیات اکتشاف طلا در منطقه سوسنوار در استان سمنان و بررسی مقدماتی منطقه اکتشافی و همچنین پیدا کردن سرشاخههای مرتبط با زونهای کانیسازی جهت محدود نمودن منطقه و طراحی شبکه نمونه برداری لیتوژئوشیمیایی، با توجه به اطلاعات و مدارک دریافتی از کارفرما تعداد ۵۸ نمونه ژئوشیمی و کانی سنگین در محدوده های آنومال طلا طراحی و برداشت گردید.

پس از دریافت نتایج آنالیز نمونههای ژئوشیمی آبراههای و کانی سنگین و با توجه به مطالعات اکتشافی قبلی، بر روی این دادهها (۲۹ نمونه) پردازش مقدماتی صورت گرفت. نتایج هر دو روش کانی سنگین و ژئوشیمی همبستگی قابل قبولی با یکدیگر داشته و همدیگر را تأیید کردهاند. همچنین بخش غیرمغناطیسی کانی سنگین نیز آنالیز شیمیایی شد که آن هم انطباق کامل با نتایج دو بخش دیگر داشته است.

با بررسی و مقایسه نتایج حاصل از این مرحله و نتایجی که در مطالعات قبلی بدست آمده بود، سرشاخه نمونههایی که از نظر باریت، سرب، روی و طلا غنی شدگی نسبی نشان دادهاند به عنوان مرکز ثقل آنومالی در نظر گرفته شده و مورد بررسی های بیشتر قرار گرفتند.

بر این اساس طراحی شبکه نمونهبرداری لیتوژئوشیمیایی صورت پذیرفت. برای طراحی شبکه نمونهبرداری لیتوژئوشیمی در این مراکز ثقل، شبکههای ۵۰×۵۰ متری (۱۳۲ سلول) و در زمینه شبکههای ۱۰۰×۱۰۰ متری (۳۸۶ سلول) و ۱۰۰×۲۰۰ متری (۱۸ سلول) طراحی گردید. از آنجایی که در برخی موارد باریت بهعنوان ردیاب طلا محسوب و بهعنوان نکته مثبت تلقی می شود، در مناطق مربوطه شبکه ۵۰×۱۰۰ متری (۶۹ سلول) طراحی گردید. با توجه به این موارد در مرحله نخست از عملیات صحرایی تعداد ۶۰۶ نمونه لیتوژئوشیمیایی طراحی گردید. نقشه نمونه برداری لیتوژئوشیمیایی همراه با لیست مختصات UTM مراکز شبکه ها پیوست گزارش می باشد.

1-6- زمین شناسی عمومی ناحیه مورد مطالعه

ناحیه مورد مطالعه در زون ایران مرکزی و بخش کوچکی از کمربند ولکانیکی ترود - چاه شیرین قرار دارد. از آنجایی که محدوده مورد مطالعه بین گسل های ترود و انجیلو قرار گرفته، در ادامه ویژگی های زمین شناسی این بخش بطور مختصر بررسی می شود.

قدیمی ترین سنگهای این بخش که به شدت تکتونیزه و درهم پیچده می با شند، به سن سیلورین – دونین بوده و شامل مجموعه ای از سنگ آهک و دولومیت های قهوه ای رنگ توده ای و برشی شده، شیست های سبز و میکا شیست های نقره ای تا خاکستری رنگ، سرپانتین، توف و شیل های سیلیسی تیره رنگ می با شد که در آن میان لایه هایی از ماسه سنگ دگر گون شده، و نیز چندین افق از سنگ های ولکانیک دگر گون شده (متا آندزیتی)، مشاهده می گردد.

بر روی این مجموعه بهترتیب واحدهای کربناته دونین-کربنیفر (؟)؛ سنگآهکهای ضخیم لایه تا تودهای خاکستری تیره و سنگآهکهای مرمری روشن پرمین؛ دولومیت و سنگآهکهای دولومیتی شده به رنگ خاکستری تیره تا قهوهای و مرمر تریاس؛ ماسهسنگ و شیلهای دگرگون شده خاکستری تیره تا سیاهرنگ ژوراسیک قرار گرفتهاند.

توالی چینهای نشان میدهد که رویداد دگرگونی ناحیهای پس از نهشتههای ژوراسیک زیرین رخ داده و لذا سن دگرگونی را میبایست پس از ژوراسیک زیرین و قبل از کرتاسه در نظر گرفت.

پس از جنبشهای تکتونیکی شدیدی که در جنوب گسل انجیلو منجر به یک دگرگونی حرارتی- فشاری با درجه پایین گردیده، پیشروی دریای کرتاسه صورت گرفتهاست. این رسوبات با ناپیوستگی زاویهدار (دگرشیبی) و بدون تحمل دگرگونی ناحیهای رسوبات قدیمی تر را پوشانیده است. رسوبات کرتاسه فوقانی بطور عمده شامل سنگ آهکهای نازک تا متوسط لایه، ماسهسنگ و آهک ماسهای، شیلهای سبز رنگ و کنگومرا بصورت عدسیهای بین لایهای است.

واحدهای سنگی بعدی در محدوده بین گسلهای ترود و انجیلو شامل واحدهای برش ولکانیکی، گدازههای آتشفشانی و توف و مارنهای زرد و سبز رنگ به سن ائوسن- الیگوسن میباشد که با ناپیوستگی زاویهدار (دگرشیبی) بر روی رسوبات کرتاسه و یا سنگهای دگرگونی قدیمی تر از کرتاسه قرار گرفته است. این مجموعه بسیار متنوع بوده و دستخوش تغییرات شدیدی گردیده است بطوری که برقراری ارتباط چینهای بین واحدها بسیار مشکل بوده و ضخامت این نهشتهها در جاهای مختلف متفاوت می باشد.

پس از الیگوسن آغازی نهشتههای ترسیری در سرتاسر ناحیه ترود تقریباً یکسان بوده و رژیمهای دریائی و قارهای را شامل می گردد و میتوان آنها را به سه سازند قرمز زیرین، سازند قم و سازند قرمز بالایی تفکیک نمود. نهشتههای اواخر ترسیر در ناحیه ترود به صورت تناوب هایی از مواد آواری و کولابی میباشد. در شکل شماره ۱-۴ محدوده مورد مطالعه بر روی نقشه زمین شناسی ۱:۲۵۰/۰۰۰ ترود نشان داده شده است.

1-7- بحثی پیرامون منشاء کانسار طلای گندی

از آنجایی که به نظر می رسد محدوده طلادار سوسن وار در نزدیکی محدوده گندی قـرار گرفتـه اسـت، اطلاعات مختصری در مورد طلای گندی ارائه می گردد.

مطالعات و بررسی های متعددی در مورد منشاء و نوع کانی سازی گندی صورت گرفته است که اکثراً ماهیت اپی ترمال برای این کانسار مورد تایید قرار می دهند. (ع. شمعانیان اصفهانی ۱۳۸۰، اشراقی ۱۳۷۷، ن تقی زاده و شیخی ۱۳۸۰، عباسی ۱۳۸۰)

با توجه به گسله های موجود در منطقه که بر سه نوع بوده: ۱- شمالی خاوری- جنوب باختری ۲- شمال باختری- جنوب خاوری ۳- خاوری- باختری و رگه های برشی کانه دار، متوجه میشویم که رگه ها تنها در سیستم گسل هایی با <u>روند شمال خاوری- جنوب باختری</u> نهشته شده، و در دو نوع گسله دیگر منطقه هیچگونه کانی سازی مشابهی دیده نمی شود. بنابراین آشکار می گردد که نهشته شدن این رگه ها پس از ایجاد شکستگی نوع اول و پیش از تشکیل شکستگی نوع دوم بوده است. رگه های باریتی منطقه تنها در شکستگی ها و گسله های نوع دوم یعنی باروند شمال باختر- جنوب خاور نهشته شده و تنها در برخی رگه های کانه دار و به مقادیر بسیار اندک دیده می شوند که نشان دهنده تشکیل این رگه ها همزمان یا پس از ایجاد این نوع شکستگی و گسله های نوع دوم یعنی باروند شمال باختر- جنوب خاور نهشته شده و تنها در برخی رگه های کانه دار و به

در شمال گندی واحدهای ولکانیکی و برش آتشفشانی عظیمی وجود دارد که از گسترش زیادی برخوردار بوده و توسط یک گسل خاور شمال خاوری- باختر جنوب باختر بنام گسل شمال گندی از توالی توفی و توف ماسه ای گندی جدا می گردد. در این محدوده نیز رگه های کانه دار برشی، سیلیسی و کربناته مشابه رگه های گندی وجود دارد که همروند آنها بوده و تفاوت آنها با رگه های گندی در سنگ میزبان و تنها وجود کانیهای مس در آنها می باشد (رگه های گندی دارای کانی های Ru, Ag, Cu, Pb, Zn می باشد).

رگه های شمالی گندی دارای کانیهای مس بهمراه طلا می باشد که تا ۱۴/۷ گرم در تـن گـزارش شـده است(شمعانیان، ۱۳۸۰). بنظر می رسد که رگه های اخیر در یک سیستم و همزمان با رگه های کانـه دار شـکل گرفته باشد. رگه های شمال گندی دارای منشاء گرمابی ولکانیکی بوده و منشاء آنها را می توان در ارتباط با فعالیتهای آتشفشانی دانست. در چنین محیط های گرمابی که دارای pH اسیدی و اکسید کننده می باشند، و با درجه حرارت بین ۲۰۰ تا ۳۰۰ درجه و عمق بین ۱ تا ۲ کیلومتر شکل می گیرد. تشکیل طلا همراه با مس بوده و اصطلاحاً سیستم هیدروترمال از نوع High Sulfidation خوانده می شود. نفوذ گازهای CO₂ ، HCl توام با فعالیت های آتشفشانی در دیواره سنگهای در برگیرنده پدیده کانی سازی مس – طلا در افقهای بالاتر ایجاد می نماید.

در مقابل کانسارهای گرمابی- آتشفشانی نوع بالا، نوع دیگری وجود دارد که دارای درجه حرارت پایین تر و محیط خنثی تر بوده و اکسیداسیون سولفیدی کمتری را تحمل می کند و معمولاً در حال تعادل با سنگهای دیواره کانالهای هیدرو ترمالی می باشد. این نوع که به نام کانسارهای طلای هیدروترمال Low Sulfidation خوانده می شود، معمولاً همراه با کانی های فلزات پایه چون سرب، روی و نقره است. همچنین این نوع کانسار ها معمولاً با کوارتز، آدولاریا، سریسیت و کلسیت بصورت رگه ای، استوک ورک تا افشان شکل می گیرند محصولات دگرسانی در سنگهای دیواره رگه ها و رگچه های طلا دار شامل ایلیت، کلریت و کائولینیت می باشند.

با توجه به توضیحات داده شده به نظر می رسد که نوع کانسار طلای گندی از نظر دگرسانی (وجود محصولات دگرسانی همچون ایلیت، کلریت، کائولینیت) و کانیهای فلزی عناصر سرب، روی و نقره با تیپ گرمابی اپی ترمال Low Sulfidation همخوانی داشته باشد. اما از طرفی مطالعه سیالات درگیر اسفالریت ها دمای تشکیل را ۲۷۵ تا ۳۵۰ درجه سانتیگراد نشان داده و کانسار از نوع اپی ترمال حد واسط Intermediate دمای Sulfidation دانسته شده است(فرد، ۱۳۸۰).

همچنین وجود کانی های حرارت بالا همچون گلوکودوت دمای تشکیل بخشی از کانسار را حرارت بالا می توان در نظر گرفت. لذا با توجه به مطالب بالا می توان کانسار گندی را از نوع اپی ترمال دانست که در مراحل مختلف و از قدیم به جدید و حداقل در سه فاز با حرارت بالا، حرارت متوسط، و بالاخره حرارت پایین نهشته شده باشد، اما بخش اصلی کانسار و رگه های کانه دار در حرارت متوسط تشکیل شده است. در مورد منشأ سیالات گرمابی، عدم برونزد توده نفوذی در نزدیکی محل کانسار از یک طرف و رخنمون گنبدهای ریولیتی تنها در این بخش از ناحیه ترود- چاه شیرین از طرف دیگر، عقیده را بر آن می دارد که کانی زایی در ارتباط نزدیک با حضور این گنبدها باشد. شواهدی دال به ارتباط بین کانه زایی در گندی و این توده های ریولیتی وجود دارد، که ذیلاً به برخی از آنها اشاره میشود.

- ۱- انطباق روند کانی سازی در محدوده گندی و روند ریولیتها
 ۲- دگرسانی مشابه در سنگ میزبان گندی و ریولیتها
 ۳- باردار بودن ریولیتها بویژه از نظر عنصر طلا
 ۴- وجود معادنی از مس و طلا در کنتاکت ریولیتها و سنگ های همجوار (معدن مـس-طـلای شـدادی
- کاکیه)، لذا می توان منشأ سیالات تشکیل دهنده کانسار گندی را در ارتباط با فازهای نیمه عمیق گنبدهای ریولیتی منطقه دانست.

فصل دوم زمین شناسی منطقه

۲-۱- مقدمه

گستره مورد مطالعه در حاشیه شمالی دشت کویر و در حدود ۱۰ کیلومتری شمال و شمال باختر حسینان واقع شده و محدوده معدنی سرب و روی و نقره خانجار در بخش شمالی آن قرار گرفته است. جاده آسفالته درجه دو به طول حدود ۱۲۰ کیلومتر شهرستان دامغان را به آبادی حسینان متصل میکند. استانهای یزد و اصفهان با استفاده از مسیر جاده آسفالته معلمان به جندق به شهرستان شاهرود متصل میشوند. این جاده در جابجایی بار و مسافر از بخش مرکزی کشور به استان خراسان به ویژه زائران مشهد مقدس اهمیت زیادی دارد. آب و هوای این ناحیه گرم و خشک و از نوع کویری است.

۲-۲ - موقعیت زمین شناسی

ناحیه مورد مطالعه از نظر زمینشناسی و زمینساخت در حاشیه شمالی پهنهی زمینشناسی و ساختمانی ایران مرکزی^۱ ، در زیر پهنه^۲ی "**رزوه – ترود – حسینان**" قرار دارد. وجود واحدهای سنگی دگرگون شده به سن قدیمی تر از کرتاسه (به احتمال زیاد مربوط به پالئوزوئیک) که در رخسارههای شیست سبز و آمفیبولیت^۲ دگرگون شدهاند، همراه با گسترش و فراوانی واحدهای سنگی ائوسن از نوع گدازه، برش آتشفشانی و توف با ترکیب اسید تا متوسط، بخش مهمی از ویژگیهای این زیر پهنه را تشکیل می دهند. در داخل واحدهای سنگی قدیمی تر از ائوسن، به ویژه واحدهای سنگی کرتاسه پسین، سنگهای آذرین نیمه مغاکی با ترکیب اسیدی تا حد واسط به صورت تودههای کوچک، سیل و رگه تزریق شده و سبب کانیزائی سرب و روی، نقره و مس در ناحیه مورد مطالعه گردیده است.

در این پروژه بر اساس شرح خدمات مصوب، ابتدا نقشه توپوگرافی ۱:۵/۰۰۰ محدوده اکتشافی با استفاده از روش فتوگرامتری عکسهای هوایی ۱:۲۰/۰۰۰ (دو قطعه عکس هوایی) تهیه شد. در مرحله بعد جهت تهیه نقشه زمین شناسی ۱:۵/۰۰۰ محدوده، ابتدا با انجام عملیات فتوژئولوژی بر روی عکسهای هوایی بزرگ مقیاس

¹ - Central Iran Structural Zone

² - Sub-Zone

³ - Green Schist and Amphibolite Facies

شده، نقشه زمینشناسی پایه تهیه و سپس با انجام عملیات صحرایی نسبت به کنترل زمینی و تایید عوارض ساختاری و زمینشناختی شناسایی شده اقدام گردید. لازم به توضیح است که بنا به صلاحدید زمینشناس ارشد پروژه، در نهایت نقشه زمین شناسی گسترهای به وسعت ۲۲/۵ کیلومتر مربع (تقریباً برابر با سطح تحت پوشش یک عکس هوایی ۱۱:۲۰۰۰) تهیه گردید. خاطر نشان می سازد که عمده فعالیتهای صحرایی در همان محدوده معرفی شده توسط کارفرما بوده است. نقشههای توپوگرافی و زمینشناسی تهیه شده ضمیمه گزارش است.

۲-3- چینه شناسی ناحیه مورد مطالعه

۲-۳-۱ رديف دگرگونه پالئوزوئيک

کهنترین سنگهای رخنموندار در گستره مورد مطالعه، شیستهای کوارتز و مسکویتدار شدیداً چین خوردهای هستند که در سطوح برگوارگی^۴ آنها رگههای سیلیسی با ضخامتهای متفاوت (۲۰ -۵) تزریق و بعد از تزریق همراه با سنگ میزبان متحمل چینخوردگی شدهاند. شواهد نشان میدهند که این رگههای سیلیسی در اصل شیرههای سیلیسی تودههای آذرین اسیدی هستند که در داخل شیستها تزریق شدهاند.

افزون بر رگههای سیلیسی، رگههای فراوانی از جنس لاتیت، کوارتز لاتیت و لاتیت آندزیت در داخل شیستهای کوارتز و مسکویتدار تزریق و در اثر دگرسانی به اپیدوت و کلریت تجزیه شدهاند. این رگهها با پهنای در حدود ۱۵ تا ۲۰ متر و طول بیشتر از ۱۰۰متر، در خاور جاده سوسنوار به کارگاههای استخراجی قارونی به فراوانی مشاهده میشوند. در برخی جاها در داخل شیستهای کوارتز و مسکویتدار افقهایی از شیستهای گرافیتدار مشاهده میشود. گرافیتهای موجود کاملاً سیاهرنگ بوده و ویژگی روان کنندگی^۵ دارند.

همبری واحد سنگی دگرگونه با دیگر واحدهای سنگی، گسله و از نوع گسلهای واژگون و تراستی است (عکس شماره ۲-۱). در نقشه ۱:۲۵۰،۰۰۰ چهارگوش ترود (سازمان زمین شناسی-۱۹۷۶)، سن واحد سنگی دگرگونه، پالئوزوئیک معرفی شده و زمان دگرگونی به حرکات کوهزایی ژوراسیک بالایی نسبت داده شده است.

⁴ - Schistosity

⁵ - Lubricant

عکس شماره ۲-۱- تصویری از شیستهای مسکویت و کوارتزدار که بهدلیل فراوانی رگههای سیلیسی و پخش شدن واریزههای آن بر روی شیستها بهرنگ سفید دیده میشود و در اثر گسل باختر کارگاههای زیرزمینی کندهشکنی و قارونی بـر روی واحـد Ku^{ml1} (کرتاسه پسین) رانده شده است. جهت راندگی از شیست به سمت سنگآهک است.

۲-۳-۲ ردیف سنگ نهشتههای کرتاسه پسین

سنگ نهشتههای کرتاسه پسین^² در نیمه شمالی گستره مورد مطالعه و در شمال آبادی سنجو برونزد دارند. کانیزائی سرب و روی معدن خانجار بصورت رگههای انباشتی در داخل سنگ نهشتههای کرتاسه بهویژه در عضو کربناته چهرهساز آن (واحدسنگی ¹ K_u) انجام شده است.

بر اساس رخساره سنگشناختی و موقعیت چینهشناسی، سنگ نهشتههای کرتاسه پسین در ناحیه مورد مطالعه به چند عضو^۷ یا واحد سنگی تقسیم می شوند که از قدیم به جدید عبارتند از:

${K_u}^{1ml}$ عضو زیرین ردیف سنگ نهشتههای کرتاسه پسین -

این واحد سنگی از مارنهای سبز رنگ متمایل به مغز پستهای، سنگ آهک آرژیلی خاکستری، شیلهای آهکی و کالک شیست با درون لایه هایی از سنگ آهک های اینوسراموس دار و اگزوژیرادار تشکیل شده و پائین ترین

⁶ - Late Cretaceous

⁷ - Member

بخش ردیف سنگ نهشتههای کرتاسه پسین را در این ناحیه تشکیل میدهد (عکس شماره ۲-۲). مشخصات سنگی و فسیلی نمونه شماره ۱۴ که از سنگ آهک آژریلی این عضو کرتاسه در جنوب خاوری تبرکوه برداشت و مطالعه شده (شهلا مددی- سازمان زمین شناسی و اکتشافات معدنی کشور) به صورت زیر می باشد.

S.No.14

Litho. : Bio sandy micrite (slightly recrystalized)

Fossils : Calcisphaerula innominata, Pithonella ovalis, Rotalid, Lagenid, Hedbergella sp., Valvulinid, Shell frag.

مجموعه فسیلهای یادشده فوق، سن کرتاسه پسین را به سنگ نهشتههای این واحد نسبت میدهد. این واحد سنگی در طول پهنهی کانیزائی از محل کارگاههای استخراجی سنجو تا قارونی به طور پیوسته و هم شیب توسط واحد سنگی کربناته و چهره ساز ¹ K_u¹ پوشیده می شود. در شمالی ترین بخش ناحیه مورد مطالعه، عملکرد گسل تراستی جنوب تبرکوه سبب رانده شدن این واحد سنگی بر روی واحد سنگی ائوسن (E^V) متشکل از توف، ماسه سنگ و شیلهای توفی بنفشرنگ، آگلومرا و گدازههای بنفشرنگ لاتیتی و کوارتز لاتیتی شده است. شیب این گسل حدود ۳۰ تا ۵۵ درجه به سمت شمال باختر است. این واحد سنگی در باختر پهنه کانیزائی سرب و این گسل حدود ۲۰ تا ۵۵ درجه به سمت شمال باختر است. این واحد سنگی در باختر پهنه کانیزائی سرب و این گسل حدود ۲۰ تا ۵۵ درجه به سمت شمال باختر است. این واحد سنگی در باختر پهنه کانیزائی سرب و این گسل حدود ۲۰ تا ۵۵ درجه به سمت شمال باختر است. این واحد سنگی در باختر پهنه کانیزائی سرب و این گسل حدود ۲۰ تا ۵۵ درجه به سمت شمال باختر است. این واحد سنگی در باختر پهنه کانیزائی سرب و این گسل حدود ۲۰ تا ۵۵ درجه به سمت شمال باختر است. این واحد سنگی در باختر پهنه کانیزائی سرب و این گسل حدود ۲۰ تا ۵۵ درجه به سمت شمال باختر است. این واحد سنگی در باختر پهنه کانیزائی سرب و این گسل حدود ۲۰ تا ۵۵ درجه به سمت شمال باختر است. این واحد سنگی در باختر پهنه کانیزائی سرب و دروی از کارگاههای استخراجی زیرزمینی سنجو تا قارونی در اثر عملکرد گسل تراستی باختر سنجو به وسیله سنگهای دگرگون پوشیده شده است.

افزون بر رگههای لاتیتی تا کوارتز لاتیتی واقع در محل گسل تراستی جنوب تبرکوه، رخنمون کوچکی از یک توده اکسید آهن نیز در کمر پائین گسل مشاهده می گردد که محل آن در روی نقشه مشخص شده است.

عکس شماره ۲-۲- تصویری از سنگآهکهای آرژیلی – سنگ آهک و شیل های آهکی کرتاسه مربوط به واحد سنگی Ku^{lm1} که در اثر عملکرد گسل تراستی پرشیب تبرکوه بر روی واحدهای ولکانیکی ائوسن رانده شده است (دید به شمال و شمال باختری).

- عضو کربناته چهره ساز K¹

این واحد سنگی بهعنوان دومین عضو مجموعه سنگ نهشتههای کرتاسه پسین، از سنگ آهکهای ضخیم لایه تا تودهای بهرنگ خاکستری متمایل به نخودی تشکیل شده و حاوی فسیلهای فراوان رودیست بهویژه هیپوریت است. ستبرای این واحد در حدود ۱۲۰ تا ۱۵۰ متر بوده و به دلیل یکنواختی و یکدست بودن رخسارهٔ سنگ شناسی و مقاوم بودن آن در برابر عوامل فرسایشی، واحد چهرهسازی را در ردیف سنگ نهشتههای کرتاسه پسین تشکیل داده است. در حد فاصل محدوده کارگاههای استخراج زیرزمینی سنجو، کنده شکنی و قارونی، به پسین تشکیل داده است. در حد فاصل محدوده کارگاههای استخراج زیرزمینی سنجو، کنده شکنی و قارونی، به پسین برگشته و به سمت باختر و جنوب باختر به سمت خاور و شمال خاور، ردیف سنگ نهشتههای کرتاسه شکننده^۸ بودن، شدیداً ورقه و رقه^۹ و خرد شده و متحمل برگشتگی و گسل خوردگی فراوان شده است. این گسلها با شیب حدود ۳۶ درجه در جهت 138/۸، جابجاییهای امتدادی قابل توجهی را در واحدهای سنگی

⁸ - Brittle

⁹ - Sheared

سبب سهولت حرکت محلولهای گرم کانیزا و تشکیل کانیسازی سرب و روی از نوع کانسارهای انباشتی در داخل این واحد سنگی گردیده است. کانیزائی در محل معدن لوتی نیز در داخل همین واحد سنگی صورت گرفته است. در محل معدن لوتی، واحد سنگی ¹ هسته یک تاقدیس را تشکیل داده و در اثر عملکردگسلهای امتدادی با شیب ۸۳ درجه در جهت N/10، جابجائیهائی در طول آن صورت گرفته است. این جابجائیها باعث خردشدگی و برشی شدن واحد سنگی گردیده و فضای مناسبی را جهت کانیسازی فراهم آورده است.

در ارتفاعات خاوری پهنهٔ کانیسازی شده سنجو- کندهشکنی به قارونی، این واحد سنگی بهوسیله واحد سنگی Ku^{m1} بهطور پیوسته و همشیب^{۰۰} پوشیده شده است.

${K_u}^{lm}$ سنگ نهشتههای عضو –

این واحد سنگی از تناوبی از سنگآهک و شیلهای آهکی تشکیل شده است. ستبرای کلی واحد سنگی در حدود ۴۰ تا۵۰ متر و ضخامت هر یک از لایههای کربناته یا شیلی در حدود ۶-۵ متر می باشد. در هر چهار افق سنگآهکی که بصورت متناوب با افقهای شیل آهکی قرار گرفتهاند، سنگوارههای فراوانی از نوع رودیست، هیپوریت، مرجان و دوکفهای مشاهده می گردد. این واحد سنگی به طور پیوسته و هم شیب توسط واحد سنگی K_u^{m2}

- سنگ نهشتههای عضو ^{m2}-

این واحد سنگی از مارن، شیلهای آهکی الوان، سیلتسنگ و ماسهسنگهای دانهریز به رنگهای قرمز، خاکستری و سبز روشن با میانلایههایی از سنگآهک و سنگآهک ماسهای تشکیل شده است. میانلایههای سنگآهکی سرشار از سنگوارههای مرجان و دوکفهای است. در مطالعه مقاطع نازک این میانلایههای آهکی، سنگوارههای میکروسکوپی زیر شناسایی شده (شهلا مددی- سازمان زمین شناسی و اکتشافات معدنی کشور) و بر اساس آن، سن این واحد سنگی کرتاسه پسین میباشد.

S.No.13, 17

Litho: Bio sandy micrite (recrystalized)

Fossils: Rotalid, Miliolid, Rudist frag.

Coral, Algal fragments.

این واحد سنگی بهطور پیوسته و همشیب بهوسیله نهشتههای ماسهسنگی قرمز رنگ با میان لایههائی از کنگلومرا (واحد K_u^{sc}) پوشیده میشود. در واقع بهدنبال رسوبگذاری رخسارههای دریایی در حوضه رسوبی کرتاسه پسین، در اثر یک مرحله پسروی^{۱۱}، یک حوضه دریائی خیلی کمعمق ساحلی و قارهای در ناحیه مورد مطالعه بوجود آمده و رسوبات آواری با رخساره تخریبی (واحدهای K_u^{sc}) و K_u^{sc}) در آن نهشته شده است.

- سنگ نهشتههای عضو K_u^{sc}

این واحد سنگی به نسبت چهرهساز بوده و از ماسهسنگهای نازک تا متوسطلایه (۲۰ ۲۰-۲) با رنگ هوازدگی قرمز آجری و میانلایههایی از ماسهسنگ کنگلومرایی دانهریز با قلوههای سیلیسی گرد شده و سفید رنگ تشکیل شده است. این واحد بهطور پیوسته و همشیب بر روی واحد سنگی K_u^{n2} قرار گرفته است. با ادامهٔ پسروی و برقراری شرایط قارهای، رخساره ماسهسنگی واحد ^{sc} K_u به رخساره بیشتر کنگلومرایی واحد ^{ccs} پسروی و برقراری شرایط قارهای، رخساره ماسهسنگی واحد مدر K_u^{sc} به رخساره بیشتر کنگلومرایی واحد ^{ccs} تبدیل و بهطور همشیب توسط آن پوشیده میشود. در برخی قسمتها رگه و رگچه های متقاطعی به مقدار فراوان و از جنس عمدتاً حاوی اکسیدها و هیدروکسیدهای آهن و کلسیت مشاهده می شود که بعضاً مقدار طلا

عکس شماره ۲- ۳- تصویری از واحد ماسهای و ماسهسنگ کنگلومرایی Ku^{sc} همراه با رگه و رگچههای هماتیتی – کلسیتی که بعضاً عیار طلا درآنها بالا می باشد.

- سنگ نهشتههای عضو K_u^{cs}

با ادامه پسروی و برقراری کامل شرایط قارهای در حوضه رسوبی کرتاسه پسین و پالئوسن (؟)، رخساره تخریبی واحد ماسه سنگی ${\rm K_u}^{
m sc}$ دانه درشت تر شده و به واحد ${\rm K_u}^{
m cs}$ متشکل از لایههای کنگلومرای قرمز رنگ با میان لایههای ماسه سنگی تبدیل می شود. در داخل کنگلومرا علاوه بر قطعات سیلیسی سفید و گرد شده، قطعاتی ازسنگهای کربناته نیز وجود دارد. این قطعات کربناته که اندازه آنها تا۲۰ سانتیمتر هم میرسد، بیشتر مربوط به واحدهای آهکی پرمین و تریاس بوده و بعضاً متبلور میباشند. در داخل کنگلومرا هیچ قطعه نابرجایی^{۱۲} از سنگ نهشتههای کرتاسه مشاهده نمی شود.

تودههای آذرین نیمهمغاکی با ترکیب عمدتاً لاتیت، کوارتز لاتیت و تراکی آندزیت و پارهای با ترکیب ريوليت و داسيت به داخل تمامي واحدهاي سنگي كرتاسه از جمله واحدهاي تخريبي بخش بالايي آن و واحدهای سنگی کهنتر از کرتاسه تزریق شدهاند، که به احتمال زیاد زمان تزریق آنها ائوسن بالائی- اولیگوسن مى باشد.

۲-۳-۳ واحد های سنگی مربوط به ائوسن از دوران سنوزوئیک

واحدهای سنگی ائوسن در نیمه جنوبی ناحیه مورد مطالعه از آبادی سنجو تا جنوب آبادی سوسنوار گسترش دارند. همبری این واحدها با واحدهای سنگی کهن تر مانند کر تاسه و سنگهای دگرگونه، از نوع گسله است. رخساره سنگی این واحدها از گدازههای آتشفشانی، برشهای آتشفشانی، توف، مارن، گلسنگ" و ماسهسنگ که در یک ردیف رسوبی- آتشفشانی به صورت متناوب قرار گرفتهاند، تشکیل شده است.

- واحد سنگي E^a

این واحد از گدازههای آتشفشانی با ترکیب آندزیت، تراکی آندزیت، لاتیت آندزیت و لاتیت حفرهدار ۲۰ بنفش رنگ تشکیل شده است. حفرات از کلسیت و سیلیس پر شده و گدازهها اکسیده و کربناتیزه هستند. معمولاً گدازههای آتشفشانی، تودهای بوده و در ردیف رسوبی- آتشفشانی ائوسن چهرهساز میباشند.

- ¹² Rework
- ¹³ Mudstone
 ¹⁴ Vesicular

${\rm E}^{ m vb}$ واحد سنگی –

این واحد سنگی از آگلومرا و برش آتشفشانی با ترکیب آندزیت- لاتیت آندزیت بهرنگ بنفش تیره متمایل به قهوهای تشکیل شده و دارای لایهبندی ضخیم (متر ۲-۱/۲) است. در ردیف رسوبی- آتشفشانی ائوسن، برشهای آتشفشانی افقهای مقاوم و چهرهسازی را تشکیل داده و از دیگر افقهای گدازهای و آذرآواری، برجسته تر و متمایزتر هستند.

${E}^{tms}$ واحد سنگی –

این واحد سنگی از ماسهسنگ دانهریز، سیلتسنگ، گلسنگ قرمز رنگ و توفهای کرمرنگ مایل به سبز روشن و سفید تشکیل شده و رنگ هوازدگی آن آجری مایل به کرم و سفید است. این واحد سنگی بهدلیل نوع رخساره سنگی در ردیف آتشفشانی- رسوبی ائوسن افقهای نرمفرسا و گود افتادهای را تشکیل داده است.

- واحد سنگی E^{t2}

در جنوب آبادی سوسنوار در ادامه ردیف آتشفشانی- رسوبی ائوسن و در بخش زبرین آن، ضخامت قابل توجهی از توفهای اسیدی دگرسان شده با ترکیب ریولیتی و ریوداسیتی بهرنگ سفید، سفید مایل به کرم و سبز روشن، رخنمون دارند. این توفها در اثر فرآیندهای دگرسانی به بنتونیت تبدیل شدهاند. این ذخایر در مکانهای مناسب مورد بهرهبرداری قرار گرفته و عملیات معدنکاری نظیر حفر تونل و ترانشه در آن مشاهده می گردد.

در شمال آبادی سوسنوار یک جبهه راندگی با شیب ۳۰ درجه در جهت N/340 وجود دارد که در اثر عملکرد آن گدازههای آتشفشانی بر روی توفهای اسیدی و سفیدرنگ واحد E^{t2} رانده شدهاند. در امتداد این گسل رورانده، یک زون برشی به ضخامت ۶–۵ متر وجود دارد. فضاهای خالی بین قطعات برشی توسط بلورهای شعاعی و درشت باریت بهرنگ صورتی روشن پر شده است. همچنین در این محل رگههای فراوانی از باریت سفیدرنگ به ضخامت حدود ۳۰- ۵ سانتی متر و با شیب حدود ۶۰ درجه در جهت N/18 بهصورت موازی با هم مشاهده می شود.

- واحد سنگی ^۳

در باختر جاده آبادی سوسنوار و سنجو به محدوده کارگاههای استخراج زیر زمینی سنجو، کندهشکنی و قارونی، در اثر عملکرد گسل تراستی جنوب تبرکوه با شیب حدود ۳۰ تا ۴۰ درجه در جهت N/325 ، سنگ نهشتههای کرتاسه دامنه جنوبی تبرکوه و سنگهای آذرین نیمهمغاکی نفوذی داخل آنها، بر روی واحد سنگی نهشتههای کرتاسه دامنه جنوبی تبرکوه و سنگهای آذرین نیمهمغاکی نفوذی داخل آنها، بر روی واحد سنگی E^v متشکل از آگلومرا، برش آتشفشانی، گدازه آتشفشانی، توف برشی، توف، ماسهسنگ، شیلهای توفی بنفش رنگ و توف کرم رنگ مایل به زیتونی، رانده شده است.

در نقشه زمین شناسی ناحیه مورد مطالعه واحد سنگی E^{v} بهعنوان یک واحد سنگی کلی و تفکیک نشده بهصورت جدا از دیگر واحدهای سنگی ائوسن نشان داده شده است.

- واحد سنگی E^{t1}

در داخل واحد ${
m E}^{
m v}$ ، هر جا که بخشهای توفی سبز روشن مایل به زیتونی و کرم رنگ قابل جدایش بوده، در سطح نقشه با نشانهٔ ${
m E}^{
m t1}$ ، بهعنوان یک واحد سنگی مستقل و جدا از واحد کلی ${
m E}^{
m v}$ ، نشان داده شده است.

۲-۳-۴ واحد های مربوط به پلیوسن و کواترنر

- واحد سنگی PLQ^C

در مسیر جاده آبادی سنجو و یا بط ورکلی در بخش جنوبی و باختر محدوده مورد مطالعه سنگ نهشته های کنگلومرایی مخروطه افکنه های کهن تر بصورت تپه ماهوری کم ارتفاعی بطور ناپیوسته و پیشرونده بررسی واحد های سنگی ائوسن قرار گرفته است. قطعات کنگلومرا از رخساره های سنگی متفاوت درست شده
که در بین آنها، تشکیل دهنده های ولکانیکی ائوسن اکثریت را دارد. سختی و جور شدگی در این کنگلومرا ضعیف است.

\mathbf{Q}^{tr} واحد سنگی -

این واحد سنگی در مجاورت شمال روستای سنجو با وسعت تقریباً ناچیزی رخنمون دارد. منــشاً آن بـه احتمال زیاد چشمه های آبگرم قدیمی بوده است. طیف رنگ این سنگها کرم، زرد و بعضاً قرمز اسـت. در عکـس شماره ۲-۴ کنتاکت این واحد نشان داده شده است که بر روی واحدهای ولکانیکی ائوسن جای گرفته است.

Q^{t1} واحد -

این واحد سنگی که گسترش به نسبت وسیعی در سطح نقشه دارد، نهشته های مربوط به پادگانه های آبرفتی کهن را در بر می گیرد.

Q^{f1} واحد -

این واحد سنگی نهشته های مربوط به مخروط افکنه های کهن پای دامنه های کوهستانی را شامل می شود، که نسبت به نهشته های مربوط به مخروطه افکنه های جدید (Q^{f2}) از ارتفاع بالاتر و از فرسایش به نـسبت شدیدتری برخوردار هستند که بصورت شیار های دندریتی ملاحظه می شوند.

Q^{al} واحد -

این واحد نهشته های عهد حاضر است که مسیل ها و آبراهه ها را تشکیل می دهد.

عکس شماره ۲-۴- تراورتن های شمال سنجو که در کنتاکت با واحد های ولکانیک ائوسن (دید به سمت شمال) از سنجو

۲-3-30 سنگهای آذرین نیمه مغاکی^{۱۵}

در داخل واحدهای سنگی کهنتر از ائوسن و بویژه در داخل واحدهای سنگی کرتاسه شمال گسل تراستی جنوب تبرکوه، سنگهای آذرین نیمه مغاکی بهصورت تودههای کوچک، سیل و دایک بهفراوانی تزریق شده که ترکیب آنها از لاتیت، کوارتز لاتیت تا لاتیت آندزیت و تراکی آندزیت تغییر میکند. در نقشه زمینشناسی ۱:۲۵۰،۰۰۰ ترود (سازمان زمینشناسی و اکتشافات معدنی کشور – ۱۹۷۶) این تودههای آذرین نیمهمغاکی به عنوان توده دیوریتی نشان داده شدهاند، در صورتیکه بر اساس مطالعات انجام شده بر روی مقاطع نازک، زمینه

¹⁵ - Shallow depth igneous intrusions (Sub-Volcanics)

این سنگهای آذرین بیشتر دانهریز و کریپتوکریستالین و پورفیریتیک می باشد. در نقشه زمین شناسی تهیه شده از ناحیه مورد مطالعه و راهنمای آن، این گروه از سنگهای آذرین با نشانه la-an نمایش داده شدهاند.

افزون بر سنگهای آذرین نیمهمغاکی یاد شده با ترکیب حدواسط، دایکها و تودههای آذرین نیمه مغاکی اسیدی با ترکیب ریولیتی و داسیتی هم وجود دارند که به داخل واحدهای تخریبی ماسهسنگی و کنگلومرایی کرتاسه پسین تزریق شده و در سطح نقشه و راهنمای آن با نشانه rh-da نمایش داده شدهاند.

4-4- دگرسانی در محدوده مورد مطالعه

نتایج حاصل از مطالعه تیغه های نازک سنگ شناختی نشان می دهد که در محدوده مورد مطالعه دگرسانی نسبتاً شدیدی در سنگ های آذرین بیرونی و سنگ های نیمه مغاکی مربوط به ائوسن صورت گرفته است. عامل این دگرسانی به احتمال زیاد محلولهای گرمی هستند که به فعالیت های آذرین ماگمایی بعد از ائوسن (احتمالاً اولیگوسن و یا جوانتر) مربوط می شوند که در سطح محدوده مورد مطالعه رخنمون ندارند.

در فرایند این دگرسانی، کانیهای فلدسپات در سنگ آذرین بیرونی و نیمه مغاکی بسته به نوع و ترکیب آن به کربنات و اکسید آهن تجزیه شده اند. فرایند دگرسانی با سیلیسی شدن فلدسپاتها همراه است. این محلولهای گرم امکان دارد در ارتباط با محلولهای گرم کانی زا باشند که کانی زایی سرب و روی را در این محدوده سبب شده اند.

۲-۵- زمینشناسی ساختمانی ناحیه مورد مطالعه

به منظور شناخت و تفسیر بهتر زمین شناسی ساختمانی ناحیه مورد مطالعه، ابتدا بر اساس عناصر ساختمانی موجود، گستره مورد نظر به بخشهای کوچکتر تفکیک و عوارض موجود در هریک از بخشها و رابطه هر بخش با بخشهای دیگر مورد مطالعه و بررسی قرار گرفت. این بخشها و ویژگیهای هریک عبارتند از:

الف – بخش شمالی محدودہ: این بخش که ارتفاعات تبرکوہ و ادامه خاوری آنرا در بر میگیرد، متشکل از سنگنهشتههای کرتاسه پسین میباشد که به داخل آن سنگهای آذرین نیمهمغاکی لاتیتی، کوارتز لاتیتی و فصل دوم

لاتیت آندزیتی به صورت توده های کوچک، سیل و دایک تزریق شده است. امتداد محور چین خوردگی در اشر سنگ نهشته های این بخش خاور، شمال خاور - باختر، جنوب باختر است. سنگ نهشته های این بخش در اشر عملکرد گسل تراستی جنوب تبرکوه بر روی رخساره های سنگی ائوسن (واحد ^vE) رانده شده اند. شیب این گسل تراستی در طول گسل از ۳۰ تا ۴۵ درجه تغییر می کند. بر اساس مطالعات صحرایی این گسل افزون بر مؤلف ه راندگی، مؤلفه حرکت راستالغز چپ بر هم دارد.

ب بخش میانی محدوده: این بخش که محدوده معدنی سرب و روی و نقره خانجار را در بر می گیرد، به وسیله گسل تراستی خانجار از بخشهای شمالی و باختری جدا می شود. گسل تراستی خانجار موجب رانده شدن سنگ نهشته های کرتاسهٔ محدوده معدنی و سنگ های د گر گونه باختر آن به سمت شمال و باختر بر روی سنگ های آتشفشانی و آذر آواری ائوسن ^E گردیده است.

در بخش میانی در اثر عملکرد گسل تراستی باختر سنجو واقع در باختر کارگاههای استخراج زیـر زمینـی زون کانیسازی سنجو شده، کنده شکنی و قارونی، سنگنهشتههای کرتاسه پسین در همبری گسله با سنگهای دگرگونه قرار می گیرند. شیب این گسل تراستی بسمت باختر و جهت راندگی از باختر و جنوب باختر به سـمت خاور و شمال خاوری است.

ج- بخش جنوبی محدوده: این بخش که از گدازههای آتشفشانی، برش آتشفشانی و سنگهای آذر آواری ائوسن تشکیل شده، به ظاهر یالی از یک ناودیس با امتداد محوری شمال خاور- جنوب باختر میباشد. همبری رخسارههای آتشفشانی و آذر آواری این بخش با سنگنهشتههای کرتاسه و سنگهای دگرگونه بخش میانی، از نوع گسله است. مجموعهای از گسلهای راستالغز چپبر با روند "شمال خاوری- جنوب باختری" و دو دسته گسلهای راستالغز راستبر با امتدادهای "شمال باختر- جنوب خاور" و "خاور، شمال خاور- باختر، جنوب باختر، از معای راستالغز راستبر با متدادهای "شمال باختر- جنوب خاور" و "خاور، شمال خاور- باختر، دسته گسلهای راستالغز راست. مجموعهای سنگی ائوسن در طول خود شدهاند. گسلهای یاد شده و عملکرد آنها در سطح نقشه نشان داده شدهاند.

۲-6- زمینشناسی اقتصادی ناحیه مورد مطالعه

با توجه به قرار داشتن محدوده معدنی سرب و روی **خانجار** در گستره مورد بررسی، ناحیه مورد مطالعه از نظر زمینشناسی اقتصادی دارای اهمیت زیادی است. این معدن که در حال حاضر جزو معادن متروکه بهشمار میرود، در سالهای قبل از ۱۳۵۵ فعال بوده و با توجه به تأسیسات معدنی به جا مانده، از معادن بزرگ سرب و روی این مرز و بوم بوده است.

بر اساس مشاهدات ومطالعات انجام شده بر روی مواد معدنی خارج شده از کارگاههای استخراج زیرزمینی که در نزدیکی دهانه تونلها ریخته شده، ماده معدنی مورد بهرهبرداری در این معـدن سـولفورهای سـرب و روی (گالن و اسفالریت) بوده است. بر اساس دادههای حاصل از تجزیه شیمیایی کانهها، میزان نقره درکانه گالن این معدن قابل توجه بوده است. در این معدن گالن و اسفالریت به صورت رگههای انباشتی فضای بین برشها و شکستگیهای سنگ میزبان را پر کرده است. در تمامی کارگاههای استخراجی این معدن، سنگ میزبان واحد سنگآهک چهرهساز هیپوریتدار کرتاسه پسین است که در سطح نقشه با نـشانه ${
m K_u}^1$ نـشان داده شـده اسـت. ردیف واحدهای سنگی کرتاسه بالا در حد فاصل کارگاههای استخراجی سنجو تا قارونی، بهعلت فشارهای ناشی از راندگی سنگهای دگرگونه از سمت باختر و جنوب باختر به سمت خاور و شمال خاور، تغییر شکل یافته و در اثر این فشارها لایههایی که در اصل به سمت خاور و شمال خاور شیب داشتهاند، حالت قائم پیدا کرده و یا به سمت باختر برگشته شدهاند. این برگشتگی و تغییر شکل لایهها و واحدهای سنگی با شکستگی، خردشدگی و تشکیل گسل، بهویژه گسلهای دارای جابجایی امتدادی کم و بیش عمود بر امتداد واحدهای سنگی، همراه بوده است. در محدوده معدنی خانجار، فعالیت و جابجایی محلولهای گرمابی کانی زا در این زونهای گسله و برشی منجر به کانی سازی از نوع رگههای انباشتی گردیده است. منشأ این محلول های گرم کانیزا احتمالاً سنگهای نیمهمغاکی با ترکیب لاتیت، کوارتز لاتیت و لاتیت آندزیت است که بصورت تودههای کوچک، سـیل و دایـک در نیمه شمالی ناحیه مورد مطالعه در داخل واحدهای سنگی کهنتر از ائوسن، بهویژه در داخل واحدهای سنگی کرتاسه پسین نفوذ کردهاند. وجود افشانههای گالن و اسفالریت در داخل تودههای آذریـن نیمـهمغـاکی و وجـود

فصل دوم

رگه و رگچههایی از سنگهای آذرین یاد شده در داخل سنگهای کربناته در پارهای از نمونههای معدنی و همراهی ماده معدنی با این رگه و رگچههای آذرین در همان نمونهها، نشاندهنده ارتباط کانیزایی با واحدهای آذرین نیمهمغاکی موجود در ناحیه مورد مطالعه میباشد.

فراوانی تودههای آذرین پورفیریتیک نیمهمغاکی و دگرسانی موجود در آنها، همراه با وجود کانیسازی کالکوپیریت بهمقدار خیلی کم در ناحیه مورد مطالعه و کانیسازی منگنز و طلا در رگههای سیلیسی همانند ناحیه اکتشافی طلای **گندی** که در جنوب خاوری ناحیه مورد مطالعه قرار دارد، مشابهت زیادی با نظامهای رگهای اسفالریت و گالن، پیرامون هسته پورفیری دارد بطوریکه میتوان نتیجه گرفت که احتمالاً هسته پورفیری در ژرفای پایینتر واقع شده است. در عکس شماره ۲–۵ نمونه ای از سنگهای مینرالیزه بخش معدنی سرب و روی نشان داده شده است.

عکس شماره ۲-۵- وجود رگههای گالن همراه با باریت که درز و شکافهای ایجاد شده در سنگ میزبان کربناته را پر کرده است. منشا این کانهزایی محلول های هیدروترمالی حاصل از توده های نفوذی اسیدی بوده است.

فصل سوم نمونه برداری، آماده سازی و آنالیز

۳-۱-۳ مقدمه

همانگونه که در روش کار به آن اشاره شد، جهت محدود کردن مساحت حوضههای طلادار و مستعد، در ابتدای پروژه با صلاحدید مشاور عالی پروژه آقای دکتر حسنی پاک و همچنین با هماهنگی آقای مهندس زمردیان ناظر پروژه، برداشت تعداد ۲۹ نمونه ژئوشیمی، ۲۹ نمونه کانی سنگین از حوضههای آنومالی طلا (فاز ۲۰۰۰۰ (فار کارج از شرح خدمات مندرج در قرارداد، در دستور کار قرار گرفت. در مرحله بعد با استفاده از نتایج حاصل از مطالعه نمونههای کانی سنگین و آنالیز نمونههای ژئوشیمیایی و نیز آنالیز ۱۷ نمونه برداشت شده از میان بخشهای مختلف نمونههای کانی سنگین، طراحی بهینه و دقیق شبکه لیتوژئوشیمیایی صورت پذیرفت. در ادامه به کاربرد نتایج بهدست آمده از این بخش از کار اشاره شده است. در شکل شماره ۳–۱ نقشه نمونههای برداشت شده نشان داده شده است. نتایج آنالیز نمونهها نیز در پیوست گزارش ارائه شده است.

۲-۲ - روش بهینه سازی طراحی شبکه

جهت نمونهبرداری از نقاط تعیین شده، اکیپ کارشناسی این مهندسین مشاور در تاریخ ۸۴/۹/۹ به منطقه اعزام شده و در نهایت تعداد ۲۹ نمونه رسوب آبراههای (بخش ۴۰ – مش) برداشت گردید. نمونههای برداشت شده بهمنظور آنالیز ۴۴ عنصری بهروش ICP-MS با انحلال در چهار اسید و آنالیز طلا به روش "Fire Assay" به شرکت ALS Chemex کشور کانادا ارسال گردید (نتایج آنالیز پیوست گزارش است). در شکل شماره ۳–۲ محدودههای جدید آنومالی حاصل از ترسیم عیارهای طلای بدست آمده از آنالیز نمونههای برداشت شده نشان داده شده است. همانطور که مشاهده می شود گستره آنومالیها کوچکتر شده و محدوده

شکل شماره ۳-۲- نقشه محدودههای جدید آنومالیهای طلا حاصل از ترسیم عیارهای بدست آمده از آنالیز نمونههای برداشت شده در روش بهینهسازی

همچنین جهت مطالعه فاز پیدایش عناصر ، تعداد ۲۹ نمونه کانی سنگین (بخش۲۰- مش) نیز برداشت و پس از لاوکشویی و برموفرمگیری مورد مطالعه قرار گرفت. جدول نتایج این مطالعات در پیوست گزارش و رهیافتهای حاصل از بررسی این نتایج در ادامه ارائه شده است.

حضور کانههای عناصر سرب، روی و مس و همچنین کانیهای باطله پیریت و باریت در اکثر نمونههای کانی سنگین برداشت شده از محدوده مورد مطالعه نشان میدهد که این منطقه از نظر کانیسازی حائز اهمیت زیادی میباشد. همچنین وجود کانیهای شاخص تودههای آذرین نظیر زیرکن، آپاتیت و روتیل در تعدادی از نمونههای کانی سنگین، بیانگر گسترش تودههای نفوذی در محدوده اکتشافی است. از طرف دیگر با توجه به اندک بودن مقدار کانههای سرب و روی در نمونههای برداشت شده از محدوده تودههای نفوذی، بهنظر میرسد که کانیسازی سرب و روی با فاصله از تودههای نفوذی و در واحدهای سنگی مجاور آنها صورت گرفته است.

بطور کلی اهم نتایج حاصله ازبررسی دادههای بدست آمده از مطالعه نمونههای کانی سنگین، به تفکیک نوع عناصر کانهساز به شرح زیر می باشد.

- سرب و روی:

بر اساس نتایج حاصل از مطالعه نمونه های کانی سنگین، کانه های گالن، اسفالریت، سروزیت و اسمیت زونیت بعنوان کانه های اصلی و کانی های میمتیت، ماسیکوت، پیرومورفیت، لیتارژ، و وانادینیت به عنوان کانی های فرعی عناصر سرب و روی در نمونه ها حضور دارند. از ۲۹ نمونه کانی سنگین برداشت شده از محدوده، در ۲۱ نمونه، اثراتی از کانی های سرب و روی در حد پراکنده و جزئی (pts) تا مقادیرقابل توجه گرم در تن شناسایی شده است. بیشترین مقدار گالن در نمونه های H-11-S، H-5-L-H، S-2-H، S-2-H و S-14-H -S-15-H -S-16-H -S-16-H، S-16-H، S-14-S، H-5-L-S، H-5-L-S، I-1-H آمده است.

– مس:

از کانههای خانوادهٔ مس، مالاکیت در حد اثرات پراکنده و جزئی و همراه با کانیسازی سرب و روی در

تعدادی از نمونه ها مشاهده است. در محدودهٔ مورد مطالعه کانیسازی مس در مقایسه با عناصر سرب و روی از گسترش کمتری برخوردار است.

- باريم:

در محدودهٔ اکتشافی باریت بعنوان گانگ همراه با کانیسازیهای سرب و روی، پراکندگی نسبتاً قابل توجهی دارد. مقادیر گرم در تن محاسبه شده برای این کانی، بیشترین همبستگی را در ارتباط با کانیسازی سرب و روی نشان داده است.

- پیریت و پیریت اکسیده:

پیریت و پیریت اکسیده از کانیهای ردیاب در نواحی کانساری بوده و در ارتباط با ذخایر طلای محلول در شبکهٔ پیریت و پیریت اکسیده، از ارزش بهسزایی برخوردارند. پراکندگی این کانیها همبستگی معناداری را با نواحی کانساری سرب و روی نشان میدهد.

- مگنتیت:

با توجه به حجم اندک بخش مغناطیسی AA (پرمغناطیس) در نمونهها، میزان مگنتیت در محدوده از گسترش قابل توجهی برخوردار نمیباشد. بیشترین میزان مگنتیت در نمونهٔ S-28-H و به مقدار 311.83 گرم درتن بدست آمده است.

- سایر کانیها:

از دیگر کانیهای شناسایی شده میتوان در بخش غیرمغناطیسی نمونهها، از کانیهای آپاتیت، زیرکن، روتیل، آناتاز، اسفن، لوکوکسن، کربنات کلسیم، فلدسپات، کوارتز، شئلیت، سلستیت و کیانیت و در بخش مغناطیسی متوسط (AV) از کانیهای هماتیت، گوتیت، پیروکسن، آمفیبول، اپیدوت، گارنت، کلریت، ژاروسیت، شاموزیت، مارتیت و نام برد. سيد

طلا

۵- بهنظر میرسد کانیسازی در ارتباط با تودههای نفوذی و در سنگهای در بر گیرنده این تودهها انجام شده است.

در نتیجه جهت اندازه گیری میزان طلای بسیار ریزدانه و نیز مقدار طلای محلول در شبکه سایر کانی ها، ابتدا بخشهای مغناطیسی (AA)، مغناطیسی متوسط (AV) و غیرمغناطیسی (NM) نمونههای حاوی مقادیر بالای سرب و روی، باریت، پیریت و پیریت اکسید مخلوط شده و در نهایت ۱۷ نمونه (که لیست آن پیوست گزارش است) برای اندازه گیری طلا توسط شرکت ALS Chemex به روش "Fire Assay" به کشور کانادا ارسال گردید.

دادههای حاصله در جدول شماره ۳-۱ نشان داده شدهاند. در این جدول نتایج آنالیز شیمیایی طلا در نمونههای ژئوشیمی و کانی سنگین با یکدیگر مقایسه شدهاند. در تمام این نمونهها مقدار طلا در بخش کانی سنگین اختلاف تقریباً فاحشی با نمونههای ژئوشیمی دارد. از طرف دیگر همانطور که ذکر شد، در نمونههای کانی سنگین، طلا بهصورت آزاد کمتر مشاهده شده بود. (در مطالعات انجام شده قبلی در نمونههای کانی سنگین وجود طلای آزاد گزارش شده بود ولی در نمونههای برداشت شده توسط کارشناسان این شرکت ذره آزاد طلا مشاهده نگردید). علت این اختلاف مقدار را میتوان در محلول بودن طلا در شبکه کانیهای دیگر از جمله کانیهای گروه سرب و روی و یا حتی در کانیهای گروه آهن و مس جستجو کرد. بهطور متوسط مقدار طلا در بخش کنسانتره کانی سنگین که در آن هیچ ذرهای از طلای آزاد مشاهده نشده، بیش از ۲۰ برابر نمونه رئونه رئونه می بخش کنسانتره کانی سنگین که در آن هیچ ذرهای از طلای آزاد مشاهده نشده، بیش از ۲۰ برابر نمونه بخش کنسانتره کانی سنگین که در آن هیچ ذره ای از طلای آزاد مشاهده نشده، بیش از ۲۰ برابر نمونه رئوشیمی هم ارز بوده است. بیشترین اختلاف مربوط به نمونه های H-27-2 و H-1-S می باشد.

از نظر موقعیت مکانی بیشترین مقدار نسبت عیار طلا در کنسانتره کانی سنگین به عیار طلا در نمونه ژئوشیمی همارز [Au(h)/Au(g)] در نمونههایی که از حوضه آنومالیهای مس برداشت شدهاند، مشاهده می شود. این محل در حاشیه خاور و شمال خاور سنجو جای گرفته است. شکل شماره ۳-۳ پراکندگی مقدار طلا در بخش کنسانتره کانی سنگین و شکل شماره ۳-۴ نقشه پراکندگی مقادیر بیش از ۲۰ در نسبت در بخش (h)/Au(g) می دهند.

سانتره نمونههای کانی سنگین	عیار طلا (ppm) در بخش کن	های ژئوشیمی	عیار طلا (ppm) در نمونه	Au(h) / Au(g)
S-1-H	0.399	S1	0.008	49.9
S-2-H	0.253	S2	0.007	36.1
S-3-H	0.12	S3	0.006	20.0
S-4-H	0.224	S4	0.012	18.7
S-5-H	1.365	S5	0.039	35.0
S-6-H	0.412	S 6	0.012	34.3
S-7-H	0.106	S 7	0.01	10.6
S-9-H	0.08	S9	0.006	13.3
S-10-H	0.24	S10	0.023	10.4
S-11-H	0.209	S11	0.011	19.0
S-12-H	0.031	S12	0.006	5.2
S-14-H	0.187	S14	0.008	23.4
S-16-H	0.372	S16	0.021	17.7
S-25-H	0.013	S25	0.003	4.3
S-26-H	0.017	S26	0.003	5.7
S-27-H	0.176	S27	0.003	58.7
S-28-H	0.038	S28	0.005	7.6

جدول شماره ۳-۱- نتایج آنالیز طلای بخش کنسانتره نمونه های کانی سنگین و مقایسه آن با نتایج ژئوشیمی

شکل شماره ۳-۳- نقشه آنومالیهای حاصل از ترسیم عیار طلا در بخش کنسانتره نمونههای کانی سنگین

از طرف دیگر با انجام آنالیز خوشهای بر روی مجموعه دادههای متشکل از مقادیر کانیهای سرب و روی و مس بههمراه باریت و اکسید و هیدروکسیدهای آهن و نیز دادهای مربوط به آنالیز طلا در نمونهای ژئوشیمیایی و کانی سنگین، نتایج قابل توجهی به شرح زیر بهدست آمد که میتوان از آنها در طراحی بهینه شبکه نمونهبرداری استفاده نمود.

در شکل شماره ۳–۵ نتیجه آنالیز خوشهای مجموعه دادههای یاد شده ارائه شده است. همانگونه که مشاهده می شود کانی های گروه سرب و روی بیشترین همبستگی را با هم داشته و خوشه مربوطه کمترین فاصله را نشان داده است. همچنین با اتصال کانی مس دار مالاکیت به آن ها یکی از خوشه های اصلی ساخته شده است.

خوشه اصلی دیگر مربوط به طلای ژئوشیمی، طلای کانی سنگین، اکسید و هیدروکسیدهای آهن و باریت است که میبایست آنرا مستقل از خوشه کانیهای سرب و روی و مس در نظر گرفت. در این خوشـه همبـستگی بالای طلای ژئوشیمی و طلای کانی سنگین بارز بوده و به آن ابتـدا شـاخه اکـسید و هیدروکـسیدهـای آهـن و سپس با فاصله بیشتر کانی باریت متصل شده است. بنابراین میتوان چنین نتیجهگیری نمود که به احتمال زیاد کانیسازی طلا در درجه اول با اکسید و هیدروکسیدهای آهن و در درجه دوم با کانی باریت قرابت زیـادی دارد. این نتیجهگیری در طراحی بهینه شبکه نمونهبرداری کاربرد داشته و بر اساس آن میتوان برای منـاطقی کـه در آنها آثار اکسید و هیدروکسیدهای آهن مشاهده میشود اهمیت بیشتری قائل شد.

Rescaled Distance Cluster Combine CASE 0 5 10 15 20 25 Label Num +----+ Рb 5 6 Zn MALACHIT 4 AuH 1 2 AuG 7 Fe BARITE 3

Dendrogram using Ward Method

شکل شماره ۳-۵- دندروگرام حاصل از آنالیز خوشهای بر روی مجموعه دادههای کانیسنگین عناصر سرب، روی و مس، همراه با باریت، اکسید و هیدروکسیدهای آهن، طلای ژئوشیمی و طلای کانی سنگین در نهایت با در نظر گرفتن کلیه اطلاعات و مشخصات، شبکهای با تعداد ۶۰۵ نمونه بهصورت شکل شماره ۳-۶ طراحی گردید. در این شبکه تعداد ۱۳۲سلول ۵۰×۵۰، ۶۹ سلول ۱۰۰×۵۰، ۳۸۶ سلول ۱۰۰×۱۰۰ و ۱۸ سلول ۱۰۰×۲۰۰ گنجانده شده است. سلولهای با ابعاد کم در مناطق پتانسیل دار طلا، سلولهای با ابعاد متوسط در مناطقی که آثاری از عناصر ردیاب مشاهده شده بود و شبکه های با ابعاد بزرگ در مناطق زمینه

طراحی شدند.

3-3- نمونه برداری

به دنبال آماده شدن مقدمات کار و با توجه به شرح خدمات، دستور کار نمونه برداری به شرح زیر تهیه و به گروه ها ابلاغ و گروه های نمونه برداری به منطقه اعزام شدند. - پیاده کردن ایستگاه های نمونه برداری بر پایه مختصات آنها و به کمک G.P.S - سنگ چین، شماره گذاری و رنگ کردن سنگ چین ایستگاه های پیاده شده (عکس شماره ۳–۱) - کوبیدن قلابهای آهنی در محل ایستگاه و بستن پلاک فلزی که شماره ایستگاه نمونه برداری بر روی آن حک شده است (عکس شماره ۳–۱). - تکمیل کاربرگ های نمونه برداری استاندارد (جدول شماره ۳–۲) - روش برداشت نمونه های لیتوژنوشیمیایی روش ردیفی- تصادفی خواهد بود که در هر سلول شبکه تعداد ۴۰ قطعه سنگ به بزرگی ۱۰۰ تا ۱۵۰ گرم از کلیه رخنمون ه ای موجود بصورت لبپری(Chip Sampling) برداشت خواهد شد و از مخلوط آنها نمونه شبکه حاصل می شود.

اکتشاف لیتوژنوشیمیایی منطقه طلا دار سوسن وار- **نمونه برداری، آماده سازی و آنالیز**

شكل شماره ۳-۶- نقشه طراحي شبكه نمونه برداري ليتوژئوشيميايي

عکس شماره ۳-۱- مشخص نمودن ایستگاه های نمونه برداری با سنگ چین، اسپری، قلاب آهنی و پلاک فلزی

داری استاندارد بکار رفته در پروره	ای نمونه بر	جدول سماره ۲۰۱۰ کاربر ک ه
	نمونه بردار:	تاريخ:
		پروژه:
	•••••	شماره نمونه:
X=	Y=	مختصات:
		نوع نمونه:
		مشخصات نمونه:
	•••••	التراسيون و رنگ آن:
		کانی سازی مشهود:
		کانی های قابل تشخیص:

دول شماره ۳–۲– کاربرگ های نمونه پرداری استاندارد بکار افته در

۳-۴- آماده سازی و آنالیز نمونه ها

کلیه نمونه های سنگی برداشت شده با سنگ شکن فکی تا ذراتی به اندازه ۱ میلیمتر خرد شده و سپس ۲۰۰ گرم آن تا ۲۰۰- مش پودر می شود. حتماً باید توجه داشت که نمونه ها حین آماده سازی آلودگی پیدا نکنند. کلیه عملیات آماده سازی نمونه ها پیش از ارسال به آزمایشگاه خارجی، در آزمایشگاه زرآزما انجام پذیرفت. پس از آماده سازی نمونه ها به آزمایشگاه شرکت Amdel کشور استرالیا ارسال گردید. روش آنالیز و

حد حساسیت برای عناصر مختلف درجدول شماره ۳-۳ نشان داده شده است. آزمایش با روش انحلال در چهار اسید و طلا با روش " Fire Assay " (کد GSI 50) آنالیز با دستگاه ICP_MS می باشد.

Element	Ag	AI	As	Au	В	Ва	Be	Bi	Ca	Cd	Ce
UNITS	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	IC3M	FA3	IC3M	IC3E	IC3E	IC3M	IC3E	IC3M	IC3M
Element	Со	Cr	Cs	Cu	Fe	Hg	K	La	Li	Mg	Mn
UNITS	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
Element	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
Element UNITS	Mo ppm	Na ppm	Nb ppm	Ni ppm	P ppm	Pb ppm	Rb ppm	S ppm	Sb ppm	Sc ppm	Sn ppm
Element UNITS DETECTION	Mo ppm 0.1	Na ppm 10	Nb ppm 0.5	Ni ppm 2	P ppm 5	Pb ppm 0.2	Rb ppm 0.1	S ppm 50	Sb ppm 0.1	Sc ppm 1	Sn ppm 0.2
Element UNITS DETECTION METHOD	Mo ppm 0.1 IC3M	Na ppm 10 IC3E	Nb ppm 0.5 IC3M	Ni ppm 2 IC3E	P ppm 5 IC3E	Pb ppm 0.2 IC3E	Rb ppm 0.1 IC3M	S ppm 50 IC3E	Sb ppm 0.1 IC3M	Sc ppm 1 IC3E	Sn ppm 0.2 IC3M
Element UNITS DETECTION METHOD Element	Mo ppm 0.1 IC3M Sr	Na ppm 10 IC3E Te	Nb ppm 0.5 IC3M Th	Ni ppm 2 IC3E Ti	P ppm 5 IC3E TI	Pb ppm 0.2 IC3E U	Rb ppm 0.1 IC3M V	S ppm 50 IC3E W	Sb ppm 0.1 IC3M Y	Sc ppm 1 IC3E Zn	Sn ppm 0.2 IC3M Zr
Element UNITS DETECTION METHOD Element UNITS	Mo ppm 0.1 IC3M Sr ppm	Na ppm 10 IC3E Te ppm	Nb ppm 0.5 IC3M Th ppm	Ni ppm 2 IC3E Ti ppm	P ppm 5 IC3E TI ppm	Pb ppm 0.2 IC3E U ppm	Rb ppm 0.1 IC3M V ppm	S ppm 50 IC3E W ppm	Sb ppm 0.1 IC3M Y ppm	Sc ppm 1 IC3E Zn ppm	Sn ppm 0.2 IC3M Zr ppm
Element UNITS DETECTION METHOD Element UNITS DETECTION	Mo ppm 0.1 IC3M Sr ppm 0.1	Na ppm 10 IC3E Te ppm 0.2	Nb ppm 0.5 IC3M Th ppm 0.02	Ni ppm 2 IC3E Ti ppm 10	P ppm 5 IC3E TI ppm 0.1	Pb ppm 0.2 IC3E U ppm 0.02	Rb ppm 0.1 IC3M V ppm 2	S ppm 50 IC3E W ppm 0.1	Sb ppm 0.1 IC3M Y ppm 0.05	Sc ppm 1 IC3E Zn ppm 0.2	Sn ppm 0.2 IC3M Zr ppm 5

مختلف	عناصر	براى	حساسيت	حد	و	آناليز	روش	, -٣-٣	شماره	جدول
-------	-------	------	--------	----	---	--------	-----	--------	-------	------

3-3- بررسی خطای آنالیز

یکی از روش های بررسی دقت آنالیز، تحقیق در زمینه کنترل تکرارپذیری آزمایشگاهی با استفاده از آنالیز نمونه های تکراری می باشد. در این پروژه تعداد ۳۰ نمونه تکراری در نظر گرفته شد. بدین منظور و پس از آماده سازی مقدماتی نمونه ها در حد ۲۰۰ – مش این تعداد از میان مجموع آن ها انتخاب و بعد از کدگذاری ویژه، همراه با نمونه های اصلی به آزمایشگاه فرستاده شد.

- روش گرافیکی تامسون- هوارث

روش رایج برای بررسی خطای آنالیز استفاده از روش گرافیکی تامسون- هوارث است. با ایس روش خطای آنالیز عناصر Ag, As, Au, Bi, Cu, Mo, Pb, Sb, Sn, Zn مورد ارزیابی قرار گرفته است. همانگونه که در نمودارهای شماره ۳–۱ تا ۳–۱۰ ملاحظه می شود در تمام آنها به جز عناصر Au, Ag و Cu خطای آنالیز کمتر از ۱۰ درصد بوده و قابل قبول است. بنابراین در بررسی نتایج و تحلیل نقشه های این عناصر باید با احتیاط کامل عمل نمود.

همانگونه که در اشکال شماره ۳-۷ تا ۳-۱۶ ملاحظه می شود، دقت آنالیز اکثر عناصر در حد قابل قبول بوده است. در این میان تنها عنصر طلا تا حدودی از دقت پایین برخوردار بوده است. مـشکل خاصـی در آنـالیز نمونه ها مشاهده نمی شود.

نمودار شماره ۳-۷- خطای آنالیز نقره با استفاده از روش گرافیکی تامسون- هوارث

نمودار شماره ۳-۹- خطای آنالیز طلا با استفاده از روش گرافیکی تامسون- هوارث

نمودار شماره ۳-۱۱- خطای آنالیز مس با استفاده از روش گرافیکی تامسون- هوارث

نمودار شماره ۳-۱۳- خطای آنالیز سرب با استفاده از روش گرافیکی تامسون- هوارث

نمودار شماره ۳-۱۵- خطای آنالیز قلع با استفاده از روش گرافیکی تامسون- هوارث

نمودار شماره ۳-۱۶- خطای آنالیز روی با استفاده از روش گرافیکی تامسون- هوارث

فصل چهارم پردازش داده ها

۴-۱- دادهپردازی

۴-۱-۱- جایگزینی دادههای سنسورد

گاهی مواقع بهعلت وجود عیارهای بسیار کم (کمتر از حد تشخیص پایینی دستگاه یا روش تجزیه) و یا عیارهای بسیار بالا (بیشتر از حد تشخیص بالایی دستگاه یا روش تجزیه) دادههای دقیقی بدست نیامده و این مقادیر عیاری بهصورت صفر (0)، یا مقادیر کمتر از حد پایینی دستگاه (>) و یا مقادیر بیشتر از حد بالایی دستگاه (<) گزارش میشوند. به این مقادیر دادههای سنسورد گفته میشود. دادههای سنسورد بهصورت کمی نبوده و وجود آنها در پردازش دادهها ایجاد اختلال مینماید. به همین دلیل میبایست با مقادیر عددی مناسب جایگزین گردند.

روشهای مختلفی برای تعیین مقادیر جایگزین دادههای سنسورد وجود دارد. از جمله این روشها میتوان از روش آماری بیشترین درستنمایی، روش جایگزینی مقدار ۳/۴ حد تشخیص پایینی دستگاه برای دادههای سنسورد کوچک تر از حد (>) و ۴/۳ حد تشخیص بالایی دستگاه برای دادههای سنسورد بزرگتر از حد (<) و روش جایگزینی ۳/۴ حد تشخیص پایینی دستگاه بهجای مقادیر سنسورد کمتر از حد نام برد. در این پروژه از روش جایگزینی ۴/۴ حد تشخیص پایینی دستگاه استفاده شده است. در جدول ۴–۱ عناصر دارای دادههای سنسورد، تعداد، درصد و مقادیر جایگزین آنها ارائه شده است.

لازم به توضیح است که صرف نظر از روش انتخابی، جایگزین کردن دادههای سنسورد در مورد عناصری که درصد بالایی از داده های آنها بصورت دادههای سنسورد میباشد، انجام نشده و این عناصر در پردازش دادهها مد نظر قرار نمی گیرند. بدین ترتیب دادههای مربوط به عنصر بُر(B) با ۱۰۰ درصد داده سنسورد و عناصر جیوه و تلور با بیش از ۹۸ درصد داده سنسورد از جریان داده پردازی خارج شدند.

	4	0	<u> </u>	11		, 0,	•
No.	Element	Unit	Total Number	Detection Limit	Censord No.	Percentage	Replaced Value
1	Ag	ppm	605	0.01	1	0.17	0.0075
2	As	ppm	605	0.5	4	0.66	0.375
3	Au	ppb	605	1	184	30.41	.75
4	В	ppm	605	0.5	605	100	0.375
5	Be	ppm	605	0.2	13	2.15	0.15
6	Bi	ppm	605	0.1	353	58.35	0.075
7	Cd	ppm	605	0.1	72	11.90	0.075
8	Cr	ppm	605	2	7	1.16	1.5
9	Cs	ppm	605	0.1	1	0.17	0.075
10	Hg	ppm	605	0.05	593	98.02	0.0375
11	La	ppm	605	10	173	28.60	7.5
12	Nb	ppm	605	0.5	7	1.16	0.375
13	Pb	ppm	605	0.2	8	1.32	0.15
14	Sc	ppm	605	1	6	0.99	0.75
15	Sn	ppm	605	0.2	8	1.32	0.15
16	Te	ppm	605	0.2	593	98.02	0.15
17	Tl	ppm	605	0.1	32	5.29	0.075
18	W	ppm	605	0.1	6	0.99	0.075
19	Zr	ppm	605	5	7	1.16	3.75

جدول شماره ۴–۱– عناصر حاوی داده های سنسورد، تعداد، درصد و مقادیر جایگزین آنها

۲-۱-۴ پردازشهای آماری دادهها (روشها)

پس از جایگزین نمودن دادههای سنسورد و محاسبه خطای آنالیز، ابتدا دادههای مربوط به نمونههای سنگی و خاک در گروههای مجزا تفکیک شده و با استفاده از نرمافزارهای Excel و SPSS دادههای همگن برای هر یک از گروهها تهیه گردید. برای همگن سازی از روش تقسیم عیار هرداده از هر عنصر بر میانه آن عنصر در گروه سنگی خود استفاده شده است. سپس دادههای خام و پردازش شده حاصله، بر حسب مورد در مطالعات آماری و تهیه هیستوگرام ها، باکس پلات ها، دندروگرام ها و... به کار برده شدند. روشهای آماری مختلفی برای جداسازی و تشخیص مناطق آنومال از زمینه وجود دارد. این روشها از انواع ساده (بر اساس پارامترهای آماری توزیع) تا پیچیده (بر اساس ساختار فضایی) تغییر میکنند. گروه دوم شامل روشهایی است که در تخمین مناطق آنومال موقعیت نقاط نمونهبرداری و ارتباط فضایی آنها را در نظر میگیرد. بدین ترتیب روشهای جداسازی آنومالی از زمینه را میتوان به دو گروه روشهای غیرساختاری و روشهای ساختاری تقسیم کرد.

در این پروژه از روش تعیین درصد فراوانی که تبدیل شده لپلتیه (یکی از معروفترین روشهای ساده غیرساختاری به شمار میآید)، استفاده شده است. در جدول ۴-۲ مقادیر زمینه برای دادههای خام و شاخص غنیشدگی (پس از تفکیک جوامع سنگی و همگنسازی) ارائه شده است.

Variable	Ag	As	Au	Ва	Cd	Cu	Мо	Pb	Sb	Zn
Raw(ppm)	0.28	12.8	2 ppb	334	0.2	21.25	2.1	21.75	1.2	60.15
Ei	0.41	0.63	0.45	0.61	0.14	0.54	0.73	0.11	0.46	0.26

جدول شماره ۴-۲- مقادیر زمینه دادههای خام و شاخص غنی شدگی

-۲- روش تهیه نقشه آنومالیها

در این پروژه نقشه آنومالی های داده خام و شاخص غنی شدگی برای هر عنصر تهیه شده است. برای تهیه نقشه آنومالیهای داده های شاخص غنی شدگی، لازم بود تا ابتدا با حذف اثر سنگ بستر، جامعه آماری دادههای خام بهصورت همگن درآید. برای این کار ابتدا دادههای هر محدوده اکتشافی با توجه به محل برداشت، به چند جامعه با سنگ بسترهای متفاوت تفکیک و پس از تعیین مقدار میانه در هر محیط نمونهبرداری، تک تک دادههای هر جامعه به مقدار میانه همان جامعه تقسیم گردید. جامعه آماری حاصل از این پردازشها، جامعه آماری همگن شده یا دادههای شاخص غنیشدگی می باشد. رسم هیستوگرام ها، محاسبه همبستگیها، انجام آنالیزهای خوشهای و فاکتوری و تهیه انواع نقشههای تک عنصری و ترکیبی با استفاده از داده های جامعه همگن شده صورت پذیرفته است.

در ادامه پردازشهای آماری، ابتدا با استفاده از نرمافزار Surfer دادههای خام و شاخص غنی شدگی، واریوگرافی شده و سپس با به کارگیری روش تخمین کریجینگ، نقشههای آنومالی عناصر As، Ag، Au، Sb، Pb، Mo و Zn تهیه شدهاند. علاوه بر نقشههای مزبور یک سری نقشههای جمعی، نسبتهای جمعی و فاکتورهای کانسارساز و ... نیز ترسیم شده که شرح آنها در ادامه ارائه گردیده است.

-3- واريوگرافي

در نمودار واریوگرام ویژگیهای مهم اکتشافی نظیر موقعیت و تداوم کانیسازی، شعاع تاثیر و همسانگردی x و یا ناهمسانگردی بررسی میشود. بهعبارت دیگر، واریوگرام بیانگر ساختار فضایی نمونهها است. در محور x واریوگرام فاصله (h) و در محور y آن میانگین مجذور اختلاف عیارها (در اینجا غنی شدگی) در فاصله h که با واریوگرام فاصله (h) و در محور y آن میانگین مجذور اختلاف عیارها (در اینجا غنی شدگی) در فاصله h که با $\gamma(h)$ نشان داده می شود، قرار می گیرد. طبیعی است که با افزایش فاصله (h) به مقدار واریوگرام نیز افزوده خواهد شد. این امر بیانگر تشابه یا تاثیر نمونهها در فاصله معینی از یکدیگر خواهد بود. بنابراین شکل واریوگرام می تواند تا حدودی بیانگر خواهد بود. بنابراین شکل واریوگرام می تواند تا می توگیر خواهد شد. این امر بیانگر تشابه یا تاثیر نمونهها در فاصله معینی از یکدیگر خواهد بود. بنابراین شکل واریوگرام می تواند تا حدودی بیانگر چگونگی تداوم کانیسازی باشد. فاصلهای را که در آن واریوگرام به حد ثابتی رسیده و می تواند تا حدودی بیانگر چگونگی تداوم کانیسازی باشد. فاصله ای را که در آن واریوگرام به حد ثابتی رسیده و می تواند تا حدودی بیانگر خواهد زمان به حد ثابتی رسیده و می تواند تا حدودی بیانگر می می تداوم کانیسازی باشد. فاصله ای را که در آن واریوگرام به حد ثابتی رسیده و می تواند تا حدودی بیانگر خواهد شعاع تاثیر می گویند. بدیهی است که در خارج از شعاع تأثیر، نمونه ها می تول از یکدیگر خواهند بود (شکل شماره ۴–۱).

مقدار واریوگرام پس از رسیدن به یک حد ثابت، سقف خوانده می شود. این مقدار در عین حال برابر واریانس کلی نمونه هایی می باشد که در محاسبه واریوگرام به کار گرفته شده است. مقدار واریوگرام در مبدأ مختصات یعنی h = 0 را اثر قطعهای ⁽ می نامند که در حالت ایده آل بایستی برابر صفر باشد. زیرا دو نمونه که از مختصات یعنی h = 0 گرفته شده، از نظر تئوری دارای عیار یکسانی هستند، اما در عمل این امر هرگز مشاهده نمی شود. ورد و شونه این می مقدار واریوگرام در مبدأ مختصات یعنی h = 0 را اثر قطعه می این می نمونه که در حالت ایده آل بایستی برابر صفر باشد. زیرا دو نمونه که از مختصات یعنی h = 0 را اثر قطعه می این می نامند که در حالت ایده آل بایستی برابر صفر باشد. زیرا دو نمونه که از مختصات یعنی مقده مده، از نظر تئوری دارای عیار یکسانی هستند، اما در عمل این امر هرگز مشاهده نمی شود. وجود اثر قطعه ای بیانگر احتمال بروز اشکالاتی است که در پیاده کردن شبکه نمونه برداری،

¹- Nugget Effect

آمادهسازی، خطای آنالیز نمونهها و در نهایت عدم ساختار فضایی کانسار در آن فاصله خواهد بود. همسانگردی یا ناهمسانگردی کانسار نیز از جمله اطلاعاتی است که از متن واریوگرامهای جهتی و غیرجهتی قابل درک است. واریوگرام، تابعی برداری است، بنابراین جهت و فاصله در آن نقش دارد. مقدار این تابع نشان میدهد که در راستاهای مختلف، میانگین عیارها نسبت به فاصله چگونه تغییر میکند. بیان ریاضی واریوگرام عبارت است از:

$$2\gamma(h) = \frac{1}{n} \sum_{i=1}^{n} [z(x_i) - z(x_i + h)]^2$$

که در آن (x_i) برابر با واریوگرام، n تعداد جفت نمونه، (x_i) عیار در نقطه x_i و $(x_i + h)$ عیار $z(x_i)$ عیار x_i است.

۲-۴- پردازش آماری دادهها

4-2 -1- نقش سنگ بستر

یکی از اساسی ترین فرضهای لازم برای تحلیل صحیح مقدار متغیرها در جوامع ژئوشیمیایی، همگن بودن آنهاست (یک جامعه بودن) و هرگونه انحراف در صحت چنین فرضی می تواند کم و بیش موجب انحرافاتی در تحلیل داده ها گردد و نهایتاً به نتایج نادرستی منجر شود. یکی از متغیرهای فعال در محیطهای سنگی که می تواند موجب ناهمگنی در جامعه ژئوشیمیایی گردد، نوع سنگ بستر رخنمون دار است که نقش منشأ را برای نمونه نماینده بازی می کند. از آنجا که تغییرات لیتولوژی میتواند زیاد باشد و از طرفی مقادیر زمینه عناصر مورد بررسی در این سنگها تا چندین برابر ممکن است تغییر کند، بنابراین به نظر می رسد فاکتور تغییرات لیتولوژی، یکی از مهمترین عوامل ایجاد ناهمگنی در جامعه نمونههای ژئوشیمیایی باشد. از آنجا که هر نمونه لیتوژئوشیمی فقط از سنگهای رخنموندار در سلول مربوط به خود برداشت می شود، تقسیم بندی این جوامع بر اساس نـوع

بر اساس نقشه زمینشناسی ۱:۵/۰۰۰ تهیه شده، محدوده مورد مطالعه دارای تنوع لیتولوژیک قابل توجهی میباشد. تعداد نمونه ها با سنگ های بستر مختلف به شرح زیر است: الف- زیر جامعه تک سنگی: ۲۵۰ نمونه (شامل ۷ تیپ سنگ مختلف) ب- زیر جامعه دو سنگی: ۲۱۱ نمونه (شامل ۸ تیپ مجموعه دو سنگی) ج- زیر جامعه سه سنگی: ۱۱۵ نمونه (شامل ۷ تیپ مجموعه سه سنگی)

چهارسنگی)

۲-۲-۴ رده بندی نمونه ها بر اساس جوامع سنگی

تقسیم بندی نمونههای برداشت شده بر اساس نوع سنگ هر نمونه در سلول های مربوطه در پردازش دادهها از آن جهت اهمیت دارد که به ما اجازه میدهد تا در هنگام محاسبه مقدار زمینه و حد آستانهای برای هر محیط مشابه از نظر لیتولوژی هر نمونه به طور جداگانه عمل کرده و از این طریق به درجه همگنی جامعه مـورد بررسی کمک کنیم. از آنجا که مقدار هر عنصر در نمونه تابع دو مؤلفه مرتبط با پدیده های سنگ زایی و مـرتبط با پدیده های کانی سازی می باشد، از این طریق می توان به خنثی سازی اثر مؤلفه مرتبط به سنگ زایی کمـک کرد. علائم اختصاری به کار برده شده برای تعیین جنس سنگها بر اساس نقشه زمین شناسی تهیه شـده بـوده و معادل آنها، در جدول شماره ۴–۳ آورده شده است. مقادیر عددی نیز میانه عناصـر در واحـد سـنگی مـورد نظـر است.

شکل شماره ۴-۲ نمودار توزیع فراوانی نمونه های لیتوژئوشیمیایی را بر اساس تعداد جوامع محیط سنگی نشان می دهد. چنانچه ملاحظه می شود حدود ۴۲ درصد از نمونه های برداشت شده دارای یک نوع محیط سنگی، ۳۵ درصد نمونه ها با دو محیط سنگی و بقیه نمونه ها شامل بیش از دو نوع محیط سنگی می باشند.

شکل شماره ۴-۳ نمودار توزیع فراوانی نمونه های تک سنگی را با نمایش نوع محیط سنگی آنها نشان می دهد. همانطور که ملاحظه می شود در بین جوامع تک سنگی واحد لیتولوژیکی FPB کمترین گسترش را دارا می باشد. شکل شماره ۴-۴ نمودار توزیع فراوانی نمونه های وابسته به محیطهای دو سنگی را با نمایش نوع لیتولوژی آنها نشان می دهد. چنانچه ملاحظه می شود جامعه دو سنگی CAR-FCGS بیشترین گسترش را دارا می باشد. در شکل شماره ۴-۵ نمودار توزیع فراوانی نمونه های وابسته به محیطهای سه سنگی با نمایش دارا می باشد. در شکل شماره ۴-۵ نمودار توزیع فراوانی نمونه های وابسته به محیطهای دو سنگی کسترش را دارا می باشد. در شکل شماره ۴-۵ نمودار توزیع فراوانی نمونه های وابسته به محیطهای سه سنگی با نمایش

بر اساس جدول شماره ۴-۳ مقادیر زمینه عناصر مختلف به تفکیک محیط سنگی در نمودارهای شکل شماره ۴-۶ ترسیم گردید. همانگونه که ملاحظه می شود واحدهای کربناته (CAR) با اختلاف معناداری در شماره ۴-۶ ترسیم گردید. همانگونه که ملاحظه می شود واحدهای کربناته (CAR) با اختلاف معناداری در تمام عناصر غنی شدگی نشان می دهد. از میان ۱۰ عنصر مورد بررسی به استثناء Cu، بیشترین مقادیر زمینه K^{m1}_{u} , K^{m2}_{u} , K^{m1}_{u} , K^{m2}_{u} , K^{m1}_{u} , K^{m2}_{u} ,

علامت	ه احتارهای : در شرزار				سنگمي منطفه	واحدماي "	. عناصر در	مفادير زمينه				تعصف استدادية رك
انتخاب شده	وی ریسی	Ag	As	Au	Ва	Cd	ĉ	Мо	Pb	Sb	Zn	بريد المترورية مي
CAR	^{ر سائ} اي، لا ^س ار، لا ^{اس} ار، لا ^{س2} ر، لا ^{سا2} ر	2.78	70.9	25	867	15.9	32	5.9	1330	10.7	532	واحدهای کربناتی
IVB	Eª,E ^{tms} ,E ^{vb}	0.47	13.5	د	555	0.3	40	1.6	24.9	<u>~</u>	107	ولكانيكهاى حدواسط
FVB	E ^v ,E ^{tt} ,E ^{tz}	0.31	15.7	З	611	0.1	23	1.7	22.2	1.5	66.4	ولکانیکهای اسیدی
M	Sch	0.23	6.5	4	170	0.1	30	3.6	15.9	0.8	27.5	سنگهای دگرگون
FCGS	K ^{mt} u,K ^m u,K ^{lm} u,K ^{m2} u, K ^{m2} u,K ^{sc} u,K ^{cs} u,E ^{tms} ,PLQ ^c	0.13	11.1	2.5	143	0.2	14	1.8	7.5	0.8	23.1	واحدهای آواری
FPB	Rhyda., la-an	0.13	4.6	د	233	0.08	14	1.9	10.4	1.2	50.9	توده های نیمه عمیق اسیدی
Q	Q ^{rr} ,Q ^{rr} ,Q ^{r2} ,Q ^{al}	0.25	8.5	0.9	435	0.35	26	2.2	26.7	0.9	88.9	وسوبات عهد حاضر

جدول شماره ۴-۳- علائم اختصاری و مقادیر زمینه (میانه) عناصر در واحدهای سنگی منطقه (عیار طلا بر حسب **ppb** و عیار سایر عناصر برحسب **ppm** است)

فصل چھارم

شکل شماره ۴-۲- نمودار توزیع فراوانی نمونه های لیتوژئوشیمیایی بر اساس تعداد جوامع سنگی

شکل شماره ۴-۴- نمودار توزیع فراوانی نمونه های دو سنگی

شکل شماره ۴-۵- نمودار توزیع فراوانی نمونه های سه سنگی

بنابراین میتوان نتیجه گرفت که واحدهای سنگی کرتاسه میزبان مناسبی برای کانیسازی بوده و به عنوان یک سد ژئوشیمیایی عمل نموده اند. سن کانی سازی به احتمال زیاد پس از کرتاسه و در ائوسن بوده است. مقدار میانگین طلا در سنگهای کربناته در حدود gpd 38 و میانه آن gpd 25 محاسبه گردیده که در ولکانیکهای حدواسط این مقدار به gpd **3** کاهش یافته است. بیشترین اختلاف مقدار زمینه در بین عناصر مورد بررسی، در محیط های سنگی مختلف، در عناصر Pb و Zn بوده است. مقدار زمینه dP و Zn در واحد کربناته کرتاسه (خصوصاً واحد ¹ سنگی مختلف، در عناصر Pb و Zn بوده است. مقدار زمینه dP و Zn در واحد کربناته در واحدهای سنگی gpd و State و State و State و State است. مقدار زمینه dP و State در واحد کربناته بررسی، در محیط های سنگی مختلف، در عناصر Pb و State و State گرم بر تن بوده است. کمترین مقدار زمینه نیز نیز کرتاسه (خصوصاً واحد ¹ State) به ترتیب در حدود State و State گرم بر تن بوده است. کمترین مقدار زمینه نیز در واحدهای سنگی BPB و State محاسبه شده است. این واحدها را می توان به عنوان واحدهای عقیم در

۲-۲-۳ بررسی پارامترهای آمار توصیفی

جهت مقایسه پارامترهای آماری دادههای خام با داده های همگن شده، جدول آماری توصیفی دادههای خام بدون هیچگونه تغییری در آنها تهیه و در جدول شماره ۴-۴ آورده شده است. در این جدول مقادیر میانگین، میانه، ماکزیمم و مینیمم در مورد طلا بر حسب ppb و در مورد سایر عناصر ppm می باشد.

قبل از شروع این مبحث لازم به یادآوری است که تمام پردازشهای مربوط به این بخش بر روی دادههای همگن شده صورت پذیرفته است. اولین گام در پردازش دادهها، داده پردازی تک متغیره با تکیه بر آمار کلاسیک به صورت توصیفی و با استفاده از نمودارهای گرافیکی است که بهعنوان مقدمهای بر دادهپردازی دو متغیره و چند متغیره محسوب می شود.

جدول پارامترهای آماری توصیفی(جدول شماره ۴-۴) مقادیر ماکزیمم، مینیمم، واریانس، میانه، میانگین، انحراف معیار، کشیدگی، چولگی و ضرایب تغییرات (%CV) را شامل می گردد. از آنجایی که انحراف معیار جوامع، پارامتر مناسبی برای مقایسه درجه تغییرپذیری آنها نیست، به همین سبب از ضریب تغییرات (%CV) که حاصل تقسیم انحراف معیار به میانگین میباشد، استفاده می شود. این پارامتر معیاری از تغییر پذیری نسبی بوده و در مقام مقایسه با تمامی عناصر نقش اساسی را بر عهده دارد.

شکل شماره ۴-۶- مقادیر زمینه عناصر در محیطهای سنگی منطقه

			_								
Variable	Mean	Std. Deviation	Variance	Skewness	Kurtosis	Minimum	P	ercentile	es	Maximum	C.V(%)
A	4.05	0.04	00.04	40.04	005.04	^	25	50	75	100	504
Ag	1.95	9.84	96.84	13.34	235.61	0	0.14	0.28	0.58/5	192	504
AI	3/119.6/	22597.05	010626747.2	0.07	-0.77	3690	18700	30600	07.475	100000	61
AS	30.08	50.31	2530.61	3.97	19.60	0	7.025	12.8	27.475	421	167
Au	1/9./4	4187.31	1/533565.83	24.59	604.91	0	0	2	6	103000	2330
ва	551.59	659.24	434601.96	4.86	50.35	34.8	142.25	334	700.5	9220	120
Be	0.97	0.61	0.37	1.58	7.80	0	0.5	0.8	1.4	6.1	62
Bi	0.07	0.12	0.01	2.86	11.49	0	0	0	0.1	0.9	167
Ca	122514.24	71117.30	5057670617	0.55	-0.17	1130	71775	113000	164000	354000	58
Cd	9.13	55.03	3028.82	11.34	156.02	0	0.2	0.2	0.6	914	603
Ce	39.01	20.40	416.18	0.67	0.06	6.5	21.425	35.8	53.375	122	52
Co	9.70	8.37	70.13	3.26	16.60	1.2	4.9	7.2	11.375	73.2	86
Cr	35.71	44.94	2019.28	4.45	31.76	0	13	22	40	524	126
Cs	2.69	2.18	4.77	2.30	6.20	0	1.4	2	3.1	14.9	81
Cu	55.29	164.84	27172.13	10.30	122.96	1.9	12.5	21.25	42.3	2290	298
Fe	26951.69	13211.83	174552365.3	0.72	0.09	4770	16125	25350	35475	79500	49
Hg	0.01	0.18	0.03	18.60	362.06	0	0	0	0	3.7	1519
к	13297.77	10974.72	120444518.1	1.30	1.02	814	5152.5	8655	19150	54800	83
La	16.50	13.10	171.68	0.23	-0.82	0	0	16	27	56	79
Li	21.35	14.79	218.86	1.50	2.52	2.5	11	17.35	27	87.8	69
Mg	10483.87	9375.41	87898364.40	2.68	10.17	1020	4572.5	8160	12875	68700	89
Mn	1588.77	1027.55	1055849.52	2.31	9.60	96	907.25	1320	1977.5	9600	65
Мо	3.60	5.18	26.81	5.39	41.76	0.3	1.4	2.1	3.4	60.9	144
Na	8370.66	8110.83	65785542.89	1.12	0.70	121	1542.5	5950	12825	43600	97
Nb	6.39	5.93	35.15	2.17	7.74	0	2	4.5	9.3	43.4	93
NI	24.54	20.57	423.29	3.44	20.94	3	13	18	28.75	231	84
Р	649.91	495.03	245054.41	1.45	2.00	54	298	492.5	876	2650	76
Pb	822.38	4017.02	16136477.54	9.91	136.46	0	10.2	21.75	62.575	67600	488
Rb	42.45	28.16	792.91	1.13	0.80	3.7	21.3	31.75	60.7	145	66
s	888.97	1243.66	1546695.13	8.42	95.04	80	400	635	1000	18400	140
Sb	4.98	19.23	369.83	11.67	182.93	0.1	0.7	1.2	2.4	351	386
Sc	6.58	4.80	23.02	1.28	1.42	0	3	5	9	28	73
Sn	0.87	0.48	0.23	1.31	3.23	0	0.5	0.8	1.1	3.8	55
Sr	513.90	720.81	519573.61	6.92	69.21	21.1	222	369	555.5	10200	140
Те	0.01	0.05	0.00	7.97	65.32	0	0	0	0	0.5	760
Th	3.77	2.57	6.58	2.12	8.04	0.25	2.02	3.125	4.975	19.8	68
Ti	2119.11	1689.67	2854977.939	1.12	0.72	172	733	1590	3085	8930	80
ті	0.36	0.34	0.11	4.39	35.28	0	0.2	0.3	0.5	4.2	94
U	1.40	0.60	0.36	1.36	3.63	0.3	0.99	1.31	1.7	4.77	43
v	61.56	43.61	1901.62	1.52	2.30	6	29	49	79	247	71
w	0.94	0.72	0.52	4.08	38.66	0	0.5	0.8	12	9.8	76
Y	11.67	4.28	18.33	0.53	1 18	31	8 7125	117	14 475	30.1	37
Zn	740.24	4628.96	21427289 21	10.00	134 77	5.7	32.7	60.15	120.75	66300	625
71	11 12	20.57	1565.00	1.60	2.41	0.7	14	26	54	201	020
<u> </u>	41.45	59.07	1000.99	1.09	2.41	0	14	20	- 04	201	30

جدول شماره ۴-۴- پارامترهای آمار توصیفی حاصل از پردازش داده های خام پس از جایگزینی دادههای سنسورد (عیار طلا بر حسب ppb و عیار سایر عناصر برحسب ppm است)

علاوه بر ضریب تغییرات، مقادیر مربوط به چولگی نیز مهم بوده و میبایست مد نظر قرار گیرد. هر چه مقدار عددی چولگی مثبت دادهها، بیشتر باشد، احتمال آنومال بودن عنصر نیز بیشتر خواهد شد. در دادههای فوق بیشترین مقادیر مثبت چولگی به ترتیب مربوط به عناصر Ag، Hg، Au، Ag و Zn میباشد. بیشترین مقدار ضریب تغییرات نیز به ترتیب مربوط به عناصر Pb، Ag، Cd، Zn، Te، Hg، Au و Cu است. علت اصلی بالا بودن مقدار ضریب تغییرات Au، وجود یک نمونه با مقدار ppm طلا میباشد. با بررسی سلول مربوط به این نمونه و حفر ترانشه شماره ۱ در آن هیچگونه آثار و شواهدی از کانی سازی مشاهده نشد و به احتمال زیاد چنین عیار بالایی ناشی از خطای آنالیز است. با محاسبه مجدد ضریب تغییرات طلا پس از حذف نمونه خارج از ردیف یاد شده، مقدار ضریب تغییرات طلا ۴۰۰ درصد بدست آمده است. بدین ترتیب در ردیف فوق، طلا بین عناصر سرب و مس قرار میگیرد.

همچنین بهعلت سنسورد بودن بخش عمدهای از دادههای عناصر Hg و Hg، وجود تکنمونههای کمعیار، موجب افزایش ضریب تغییرات این عناصر شده است. بنابراین ضریب تغییرات بالای عناصر جیوه و تلور فاقد ارزش است. بدین ترتیب در بین عناصری که ضریب تغییرات بالایی داشتهاند، عناصر Zn، Pb، Cd، Zn و Cu اهمیت زیادی دارند و احتمال وجود کانیسازیهای مربوط به آنها در محدوده بیشتر از عناصر دیگر است.

۲-۲-۴ ترسیم هیستوگرامها و شرح آنها

هیستوگرام نمایش گرافیکی دادهها بر مبنای کلاسه ^۲های از پیش تعریفشده است. در این نمودارها محور X نمایانگر تعداد کلاسهها و محور Y نشاندهنده فراوانی هر یک از کلاسهها میباشند. سه ویژگی موقعیت⁷، پراکندگی[†] و شکل^۵ توسط هیستوگرامها قابل ارائه است. محاسبه موقعیت در یک جامعه آماری با محاسبه میانگین حسا بی و هندسی جامعه، مد و میانه و محاسبه پراکندگی با آمارهایی همچون حد^{*}، انحراف درون چارکی^۲، واریانس و انحراف معیار انجام میگیرد. شکل یک هیستوگرام نیز از پارامترهایی همچون چولگی و کشیدگی تاثیر می پذیرد. هیستوگرامها به همراه جدول پارامترهای آماری، اولین پارامترهایی هستند که امکان پردازشهای بعدی را در اختیار کارشناسان قرار می دهند. تمام هیستوگرام های ایـن محـدوده با اسـتفاده از

- ⁵ Shape
- ⁶₇ Range
- ⁷ Interquartile Devision

² - Interval

³ - Location

⁴ - Dispersion

با مشاهده هیستوگرامها میتوان به نوع تابع توزیع، وجود یا عدم وجود چولگی و میزان تقریبی آن پی برد. چنانچه شکل هیستوگرام عنصری در توزیع دادههای همگن شده به یک شکل نسبتاً نرمال نزدیک باشد نمیتوان آنومالی ارزشمندی را از آن انتظار داشت. نتایج حاصل از بررسی هیستوگرامهای جوامع خام و همگن شده محدوده نیاز به شرح زیر می باشد.

قبل از حذف مقادیر خارج از ردیف کلیه عناصر مورد بررسی، توزیع لاگنرمال نشان دادهاند. پس از حذف دادههای خارج از ردیف، کماکان عناصر مورد بررسی داری توزیع لاگ نرمال هستند. این نحوه توزیع دلیل محکمی از رخداد آنومالی و احتمالاً کانیسازی در منطقه محسوب میشود. حال اگر از دادههای جدید لگاریتم گرفته شود تا حدود زیادی تابع توزیع به حالت نرمال نزدیک می شود.

۲-۴-۵- ترسیم باکس پلات ها

باکس پلاتها یا نمودارهای جعبهای یکی از روشهای نمایش توزیع دادهها در جوامع آماری است که با توجه به چارکهای آن و حد بین چارکی[^] انتخاب شدهاند. در این نمودارها میزان حداقل، ۲۵ درصد، میانگین، ۷۵ درصد و حداکثر به نمایش گذارده شده و نمونههایی نیز بر اساس حد بین چارکی بهعنوان نمونههای خارج

⁸ - Interquartile Ranges

از رده^۲ یا فوق العاده^۲ محسوب شده اند. نمونه های خارج از رده به نمونه هایی اطلاق می شود که فرمول زیر در آن ها صادق باشد: نمونه هایی که مقادیر عنصری آنها بالاتر از این حد باشد به عنوان نمونه های فوق العاده نامیده می شوند. کشیدگی دم (Tail) باکس پلاتها می تواند معرف نمونه هایی باشد که در مقادیر غیر معمول خود را نشان داده اند. با توجه به باکس پلات ها می توان، به بررسی میزان مناسب حد تشخیص^{۱۱} ، میزان گستردگی حد بین چارکی، وضعیت میانگین در نمودار، نحوه گسترش نمونه های خارج از رده و فوق العاده و تمایز نسبی جوامع نرمال با سایر جوامع و احتمال پیدایش مقادیر ناهنجار را مشخص کرد (اشکال ۴–۱۲ تا ۴–۱۴).

نقره در نمونه های ۳۴۱، ۲۱۰، ۳۸۷ و ۲۸۴ بیشترین غنی شدگی را به میزان بیش از ۱۸ تا حدود ۵۰ برابر زمینه نشان می دهد.

آرسنیک در نمونه های ۵۹، ۳۱۳، ۲۱۰ و ۲۰۶ بیشترین غنی شدگی را به میزان بیش از ۸ تا ۱۲ برابر زمینه نشان می دهد.

طلا در نمونه های ۵۳۲، ۵۳۰، ۵۹، ۸۶ و ۵۲۲ ماکزیمم غنی شدگی را نشان داده اند. غنی شدگی آنها بیش از ۱۰ تا ۱۸ برابر مقدار زمینه در محدوده نمونه برداری است.

روی در نمونه های ۳۴۱، ۳۲۴، ۳۲۲ و ۲۷۰ بیشترین غنی شدگی را به میزان بیش از ۲۰ تا ۶۰ برابر زمینه نشان می دهد.

در این میان بیشترین غنی شدگی در عناصر Sb ،Pb ،Zn ،Cd و تاحدودی Ag و Au مشاهده می شود. از میان نمونه ها، شماره های ۲۱۰، ۲۷۰، ۳۲۱ و ۳۷۴ در عناصر Au ،Ag ،Ag ،Ag ،Au و W ،Sb ،Pb ،Cd ،As ،Ag ،Au و ۳۲۹ بیشترین مقدار غنی شدگی را نشان داده اند. نمونه ۳۴۱ به همراه نمونه ۳۷۴ بالاترین میزان غنی شدگی را در عناصر Zn و Pb ،Ag و Pb ،Ag و عناص میزان غنی شدگی را نشان داده اند. در جدول شماره ۴–۵ کد نمونه های غنی شده به همراه میزان غنی شدگی عناصر نشان داده شده است.

9 - Outlier

¹⁰ - Extreme

¹¹ -Detection Limit

شکل شماره ۴-۱۲ - باکس پلات عناصر Ag, As, Au, Ba, Cd, Cu پس از همگن سازی

شکل شماره ۴–۱۳ – باکس پلات عناصرMo, Pb, S, Sb, Tl, W پس از همگن سازی

شکل شماره ۴-۱۴ - باکس پلات عنصر Zn پس از همگن سازی

۲-۴- بررسی ضرایب همبستگی

بررسی روابط دو عنصر (متغیر) و نحوه ارتباط آنها از طریق محاسبه ضریب همبستگی قابل بررسی است. ضریب همبستگی دارای دامنه تغییراتی بین ۱- و ۱+ بوده به طوری که عدد ۱- نمایانگر همبستگی کامل و منفی (ناهمسو)، عدد صفر معرف عدم وجود همبستگی بین دو عنصر (متغیر) و عدد ۱+ نشانگر همبستگی مثبت (همسو) کامل و ۱۰۰ درصد بین دو متغیر می باشد.

-1- محاسبه ضریب همبستگی و بررسی اعتبار آن ها

محاسبه ضرایب همبستگی یکی از روشهای آمار دو متغیره بوده و در تعیین دامنه پاراژنتیک عناصر از آن استفاده میشود. چندی پیش از این، برای اعتبار ضرایب همبستگی حدی تعریف شده (0.5±) قرار داده و گروهی از صاحبنظران عقیده داشتند که برای محاسبه ضریب همبستگی میبایست از جوامع نرمال استفاده کرد. لذا با استفاده از نرمافزارهای گوناگون به نرمالایز کردن دادهها میپرداختند. ولی با توجه به پیشرفت نرم افزارهای آماری و توانایی آنها در محاسبه حد اعتبار (Significant Level)، مبنای حد اعتبار تغییر نموده و بر اساس تعداد نمونهها حد اعتبار میتواند پایین تر یا بالاتر از 0.5± در نظر گرفته شود.

				U J				, ,			
Sample NO.	El Ag	Sample NO.	El As	Sample NO.	El Au	Sample NO.	El Ba	Sample NO.	El Cd	Sample NO.	El Cu
SK-341	46.83	SK-59	11.44	SK-38	Omitted	SK-374	11.14	SK-341	60.55	SK-502	27.00
SK-210	20.05	SK-313	10.93	SK-533	17.81	SK-580	11.06	SK-270	32.19	SK-431	20.21
SK-387	19.00	SK-210	10.57	SK-270	17.52	SK-123	6.11	SK-284	31.12	SK-248	11.53
SK-284	17.68	SK-206	7.95	SK-59	13.70	SK-105	5.97	SK-387	28.21	SK-230	11.42
SK-3	16.00	SK-121	6.87	SK-86	12.69	SK-32	5.37	SK-128	26.07	SK-426	7.26
SK-212	15.33	SK-294	6.41	SK-522	11.30	SK-121	5.24	SK-3	23.62	SK-216	6.70
SK-374	14.95	SK-200	6.22	SK-433	11.06	SK-104	5.04	SK-342	18.09	SK-148	6.41
SK-458	7.12	SK-243	6.19	SK-172	9.86	SK-139	4.94	SK-32	16.89	SK-237	6.36
SK-354	6.83	SK-142	5.33	SK-200	9.39	SK-262	4.68	SK-195	11.77	SK-294	5.92
SK-469	6.82	SK-402	5.31	SK-502	7.73	SK-428	4.13	SK-262	11.75	SK-511	5.26
SK-32	6.80	SK-172	4.90	SK-480	7.11	SK-385	3.97	SK-7	10.85	SK-352	5.07
SK-104	6.29	SK-511	4.74	SK-322	6.86	SK-239	3.92	SK-371	9.96	SK-577	4.89
SK-270	6.21	SK-537	4.09	SK-122	5.99	SK-263	3.91	SK-338	9.85	SK-341	4.82
SK-161	6.18	SK-374	4.08	SK-30	5.69	SK-42	3.76	SK-102	9.47	SK-590	4.76
SK-371	6.02	SK-166	4.02	SK-206	5.53	SK-34	3.75	SK-469	9.12	SK-424	4.71
SK-102	5.92	SK-345	3.82	SK-166	5.28	SK-227	3.69	SK-210	7.83	SK-337	4.64
SK-7	5.88	SK-270	3.79	SK-243	5.17	SK-101	3.68	SK-220	7.49	SK-206	4.46
SK-337	5.40	SK-8	3.76	SK-523	5.12	SK-352	3.49	SK-286	7.23	SK-147	4.46
SK-364	4.61	SK-415	3.75	SK-417	5.04	SK-7	3.37	SK-354	7.15	SK-419	4.32
SK-286	4.09	SK-220	3.74	SK-380	4.57	SK-599	3.29	SK-264	6.44	SK-313	3.99
Sample	El Ma	Sample		Sample	FLO	Sample		Sample	EL M/	Sample	El 7a
Sample NO.	EI Mo	Sample NO.	EI Pb	Sample NO.	EI S	Sample NO.	El Sb	Sample NO.	EI W	Sample NO.	El Zn
Sample NO. SK-374	El Mo 16.24	Sample NO. SK-341	EI Pb 59.14	Sample NO. SK-341	EI S 25.29	Sample NO. SK-341	EI Sb 32.85	Sample NO. SK-210	EI W 12.65	Sample NO. SK-341	El Zn 59.21
Sample NO. SK-374 SK-206	El Mo 16.24 7.63 7.53	Sample NO. SK-341 SK-374	El Pb 59.14 38.95 28.84	Sample NO. SK-341 SK-537 SK-75	EI S 25.29 9.86 8.51	Sample NO. SK-341 SK-374 SK-210	El Sb 32.85 25.15	Sample NO. SK-210 SK-213 SK-313	EI W 12.65 4.32	Sample NO. SK-341 SK-284	El Zn 59.21 36.09 26.89
Sample NO. SK-374 SK-206 SK-294 SK-313	El Mo 16.24 7.63 7.53 6.17	Sample NO. SK-341 SK-374 SK-270 SK-3	El Pb 59.14 38.95 28.84 26.35	Sample NO. SK-341 SK-537 SK-75 SK-361	EI S 25.29 9.86 8.51 5.85	Sample NO. SK-341 SK-374 SK-210 SK-284	El Sb 32.85 25.15 16.99	Sample NO. SK-210 SK-213 SK-313 SK-272	EI W 12.65 4.32 3.92 3.80	Sample NO. SK-341 SK-284 SK-32 SK-387	El Zn 59.21 36.09 26.89 25.96
Sample NO. SK-374 SK-206 SK-294 SK-313 SK-230	El Mo 16.24 7.63 7.53 6.17 6.00	Sample NO. SK-341 SK-374 SK-270 SK-3 SK-387	EI Pb 59.14 38.95 28.84 26.35 21.82	Sample NO. SK-341 SK-537 SK-75 SK-361 SK-433	EI S 25.29 9.86 8.51 5.85 5.28	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387	EI Sb 32.85 25.15 16.99 14.01	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-212	EI W 12.65 4.32 3.92 3.80 3.53	Sample NO. SK-341 SK-284 SK-32 SK-387 SK-270	El Zn 59.21 36.09 26.89 25.96
Sample NO. SK-374 SK-206 SK-294 SK-313 SK-230 SK-251	El Mo 16.24 7.63 7.53 6.17 6.00 5.54	Sample NO. SK-341 SK-374 SK-270 SK-3 SK-387 SK-210	El Pb 59.14 38.95 28.84 26.35 21.82 17.79	Sample NO. SK-341 SK-537 SK-75 SK-361 SK-433 SK-74	EI S 25.29 9.86 8.51 5.85 5.28 3.94	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-32	El Sb 32.85 25.15 16.99 14.01 12.17 11.81	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-212 SK-212	EI W 12.65 4.32 3.92 3.80 3.53 3.21	Sample NO. SK-341 SK-284 SK-32 SK-387 SK-270 SK-342	El Zn 59.21 36.09 26.89 25.96 22.13 16.24
Sample NO. SK-374 SK-206 SK-294 SK-313 SK-230 SK-251 SK-458	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-210 SK-242	El Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37	Sample NO. SK-341 SK-537 SK-75 SK-361 SK-433 SK-74 SK-442	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-32 SK-3	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-212 SK-292 SK-353	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18	Sample NO. SK-341 SK-284 SK-32 SK-387 SK-270 SK-342 SK-342	El Zn 59.21 36.09 26.89 25.96 22.13 16.24 15.62
Sample NO. SK-374 SK-206 SK-294 SK-294 SK-230 SK-251 SK-251 SK-458 SK-231	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-210 SK-242 SK-354	El Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16	Sample NO. SK-341 SK-537 SK-75 SK-361 SK-433 SK-74 SK-442 SK-206	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-32 SK-313	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49	Sample NO. SK-210 SK-213 SK-213 SK-213 SK-212 SK-212 SK-292 SK-353 SK-347	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17	Sample NO. SK-341 SK-284 SK-32 SK-387 SK-270 SK-342 SK-342 SK-374	El Zn 59.21 36.09 26.89 25.96 22.13 16.24 15.62 13.66
Sample NO. SK-374 SK-206 SK-294 SK-313 SK-230 SK-230 SK-251 SK-458 SK-231 SK-589	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-210 SK-242 SK-354 SK-32	El Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88	Sample NO. SK-341 SK-537 SK-75 SK-361 SK-433 SK-74 SK-442 SK-206 SK-249	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-32 SK-313 SK-270	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26	Sample NO. SK-210 SK-213 SK-213 SK-212 SK-212 SK-292 SK-353 SK-347 SK-34	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90	Sample NO. SK-341 SK-284 SK-32 SK-387 SK-270 SK-342 SK-342 SK-374 SK-374 SK-286	El Zn 59.21 36.09 26.89 25.96 22.13 16.24 15.62 13.66 12.37
Sample NO. SK-374 SK-206 SK-294 SK-313 SK-230 SK-251 SK-251 SK-458 SK-231 SK-589 SK-193	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-387 SK-210 SK-242 SK-354 SK-32 SK-342	EI Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74	Sample NO. SK-341 SK-537 SK-75 SK-361 SK-433 SK-74 SK-206 SK-249 SK-55	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-32 SK-313 SK-270 SK-262	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-212 SK-212 SK-292 SK-353 SK-347 SK-34 SK-427	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89	Sample NO. SK-341 SK-284 SK-32 SK-387 SK-270 SK-342	EI Zn 59.21 36.09 26.89 25.96 22.13 16.24 15.62 13.66 12.37 11.91
Sample NO. SK-374 SK-206 SK-294 SK-313 SK-230 SK-251 SK-458 SK-231 SK-589 SK-193 SK-245	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-210 SK-242 SK-354 SK-32 SK-342 SK-342 SK-469	El Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47	Sample NO. SK-341 SK-537 SK-75 SK-74 SK-433 SK-74 SK-249 SK-55 SK-417	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-313 SK-270 SK-262 SK-342	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26	Sample NO. SK-210 SK-213 SK-213 SK-212 SK-212 SK-292 SK-353 SK-347 SK-427 SK-347 SK-346	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74	Sample NO. SK-341 SK-284 SK-32 SK-37 SK-342	El Zn 59.21 36.09 26.89 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86
Sample NO. SK-374 SK-206 SK-294 SK-294 SK-230 SK-230 SK-231 SK-231 SK-231 SK-589 SK-193 SK-245 SK-271	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24 3.93	Sample NO. SK-341 SK-374 SK-270 SK-37 SK-270 SK-387 SK-210 SK-242 SK-354 SK-354 SK-32 SK-342 SK-469 SK-104	EI Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47 12.07	Sample NO. SK-341 SK-537 SK-75 SK-75 SK-74 SK-74 SK-206 SK-249 SK-55 SK-417 SK-250	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59 3.58	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-32 SK-313 SK-270 SK-262 SK-342 SK-342	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26 7.55 7.51	Sample NO. SK-210 SK-213 SK-313 SK-212 SK-212 SK-292 SK-347 SK-34 SK-427 SK-343	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74 2.71	Sample NO. SK-341 SK-284 SK-32 SK-370 SK-342 SK-344 SK-344 SK-344 SK-486 SK-469	EI Zn 59.21 36.09 26.89 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86 11.34
Sample NO. SK-374 SK-206 SK-294 SK-313 SK-230 SK-231 SK-458 SK-231 SK-589 SK-193 SK-245 SK-271 SK-232	EI Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24 3.93 3.93	Sample NO. SK-341 SK-374 SK-270 SK-387 SK-210 SK-242 SK-354 SK-354 SK-32 SK-342 SK-342 SK-469 SK-104 SK-7	El Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47 12.07 11.23	Sample NO. SK-341 SK-537 SK-75 SK-75 SK-74 SK-433 SK-74 SK-249 SK-249 SK-55 SK-417 SK-250 SK-342	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59 3.58 3.50	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-313 SK-270 SK-262 SK-342 SK-342	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26 7.55 7.51 7.29	Sample NO. SK-210 SK-213 SK-213 SK-212 SK-212 SK-292 SK-353 SK-347 SK-436 SK-231 SK-231	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74 2.71 2.58	Sample NO. SK-341 SK-284 SK-32 SK-37 SK-270 SK-342 SK-36 SK-262 SK-469 SK-195	El Zn 59.21 36.09 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86 11.34 9.41
Sample NO. SK-374 SK-206 SK-294 SK-294 SK-230 SK-230 SK-251 SK-251 SK-251 SK-231 SK-589 SK-193 SK-245 SK-271 SK-232 SK-175	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24 3.93 3.93 3.69	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-210 SK-242 SK-354 SK-32 SK-354 SK-32 SK-342 SK-469 SK-104 SK-7 SK-284	EI Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47 12.07 11.23 10.54	Sample NO. SK-341 SK-537 SK-75 SK-74 SK-74 SK-206 SK-249 SK-55 SK-2417 SK-250 SK-250 SK-342 SK-250 SK-342 SK-342	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59 3.58 3.50 3.36	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-32 SK-313 SK-270 SK-262 SK-342 SK-262 SK-342 SK-342 SK-469 SK-212 SK-212	EI Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26 8.26 7.55 7.51 7.51 7.29	Sample NO. SK-210 SK-213 SK-313 SK-212 SK-212 SK-212 SK-347 SK-347 SK-427 SK-343 SK-342 SK-425 SK-426 SK-231 SK-290 SK-290 SK-290 SK-365	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74 2.71 2.58 2.53	Sample NO. SK-341 SK-284 SK-32 SK-370 SK-374 SK-374 SK-286 SK-128 SK-262 SK-469 SK-195	EI Zn 59.21 36.09 26.89 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86 11.34 9.41 9.11
Sample NO. SK-374 SK-206 SK-294 SK-230 SK-230 SK-231 SK-458 SK-231 SK-589 SK-231 SK-589 SK-193 SK-245 SK-271 SK-232 SK-275 SK-290	EI Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24 3.93 3.93 3.69 3.67	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-210 SK-242 SK-354 SK-354 SK-32 SK-342 SK-342 SK-469 SK-104 SK-7 SK-284 SK-286	EI Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47 12.07 11.23 10.54 10.40	Sample NO. SK-341 SK-537 SK-75 SK-75 SK-74 SK-249 SK-249 SK-55 SK-417 SK-250 SK-342 SK-342 SK-342	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59 3.58 3.50 3.36 3.36 3.19	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-313 SK-313 SK-270 SK-262 SK-342	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26 7.55 7.51 7.29 7.29 5.86	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-347 SK-347 SK-347 SK-427 SK-436 SK-290 SK-365 SK-8	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74 2.74 2.71 2.58 2.53 2.49	Sample NO. SK-341 SK-284 SK-32 SK-370 SK-342 SK-374 SK-286 SK-128 SK-262 SK-469 SK-195 SK-102 SK-7	El Zn 59.21 36.09 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86 11.34 9.41 9.11 8.81
Sample NO. SK-374 SK-206 SK-294 SK-294 SK-230 SK-230 SK-231 SK-231 SK-231 SK-231 SK-233 SK-245 SK-271 SK-232 SK-175 SK-290 SK-354	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24 3.93 3.93 3.69 3.67 3.56	Sample NO. SK-341 SK-374 SK-270 SK-3 SK-387 SK-210 SK-210 SK-242 SK-354 SK-32 SK-354 SK-32 SK-342 SK-469 SK-104 SK-7 SK-284 SK-286 SK-286	EI Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47 12.07 11.23 10.54 10.40 10.06	Sample NO. SK-341 SK-537 SK-75 SK-74 SK-74 SK-206 SK-249 SK-55 SK-249 SK-250 SK-250 SK-342 SK-250 SK-342 SK-342 SK-342 SK-342 SK-342 SK-342 SK-589 SK-522	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59 3.58 3.59 3.58 3.50 3.36 3.19 3.16	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-32 SK-313 SK-270 SK-262 SK-342 SK-262 SK-342 SK-469 SK-212 SK-77 SK-172 SK-172 SK-192	El Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26 8.26 7.55 7.51 7.51 7.29 7.29 5.86 5.48	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-272 SK-213 SK-214 SK-2153 SK-347 SK-347 SK-347 SK-347 SK-3427 SK-426 SK-427 SK-436 SK-231 SK-290 SK-365 SK-8 SK-93	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74 2.71 2.58 2.53 2.49 2.49	Sample NO. SK-341 SK-284 SK-32 SK-370 SK-374 SK-342 SK-128 SK-128 SK-469 SK-195 SK-102 SK-7 SK-165	EI Zn 59.21 36.09 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86 11.34 9.41 9.11 8.81 8.77
Sample NO. SK-374 SK-206 SK-294 SK-313 SK-230 SK-230 SK-231 SK-458 SK-231 SK-589 SK-193 SK-245 SK-245 SK-271 SK-232 SK-271 SK-232 SK-175 SK-290 SK-354 SK-415	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24 3.93 3.93 3.69 3.67 3.56 3.41	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-210 SK-242 SK-354 SK-322 SK-354 SK-322 SK-342 SK-469 SK-104 SK-7 SK-284 SK-286 SK-286 SK-262 SK-102	EI Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47 12.07 11.23 10.54 10.40 10.06 7.66	Sample NO. SK-341 SK-537 SK-75 SK-75 SK-74 SK-206 SK-249 SK-55 SK-249 SK-55 SK-3417 SK-250 SK-342 SK-342 SK-342 SK-342 SK-342 SK-589 SK-522 SK-228	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59 3.58 3.59 3.58 3.50 3.36 3.19 3.16 3.14	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-387 SK-313 SK-270 SK-262 SK-342 SK-262 SK-342 SK-342 SK-342 SK-342 SK-342 SK-342 SK-342 SK-342 SK-342 SK-102 SK-172 SK-192 SK-195	EI Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26 7.55 7.51 7.51 7.29 7.29 5.86 5.48	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-272 SK-213 SK-2412 SK-2412 SK-343 SK-347 SK-340 SK-341 SK-436 SK-290 SK-365 SK-8 SK-93 SK-364	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74 2.71 2.58 2.53 2.49 2.49 2.48	Sample NO. SK-341 SK-284 SK-32 SK-370 SK-370 SK-342 SK-371 SK-371	EI Zn 59.21 36.09 26.89 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86 11.34 9.41 9.41 9.11 8.81 8.77 8.11
Sample NO. SK-374 SK-206 SK-294 SK-294 SK-210 SK-230 SK-231 SK-251 SK-458 SK-231 SK-231 SK-251 SK-253 SK-21 SK-245 SK-271 SK-232 SK-271 SK-232 SK-175 SK-290 SK-354 SK-207	El Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24 3.93 3.93 3.69 3.69 3.67 3.56 3.41 3.25	Sample NO. SK-341 SK-374 SK-270 SK-270 SK-387 SK-210 SK-242 SK-354 SK-322 SK-354 SK-322 SK-354 SK-322 SK-342 SK-469 SK-104 SK-7 SK-284 SK-286 SK-262 SK-102 SK-338	EI Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47 12.07 11.23 10.54 10.40 10.06 7.66 7.49	Sample NO. SK-341 SK-537 SK-75 SK-761 SK-74 SK-433 SK-442 SK-206 SK-249 SK-255 SK-417 SK-250 SK-342 SK-342 SK-342 SK-342 SK-342 SK-342 SK-195 SK-589 SK-522 SK-228 SK-228	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59 3.58 3.59 3.58 3.50 3.36 3.19 3.16 3.14 2.71	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-32 SK-313 SK-270 SK-262 SK-342 SK-262 SK-342 SK-342 SK-342 SK-342 SK-342 SK-469 SK-412 SK-412 SK-412 SK-172 SK-192 SK-195 SK-354	EI Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26 8.26 7.55 7.51 7.51 7.51 7.29 7.29 5.86 5.48 5.34	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-272 SK-213 SK-272 SK-272 SK-272 SK-272 SK-212 SK-212 SK-212 SK-212 SK-212 SK-212 SK-212 SK-353 SK-353 SK-347 SK-340 SK-365 SK-364 SK-399	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74 2.71 2.58 2.53 2.49 2.49 2.48	Sample NO. SK-341 SK-284 SK-32 SK-370 SK-374 SK-374 SK-286 SK-128 SK-262 SK-469 SK-195 SK-102 SK-102 SK-102 SK-371	EI Zn 59.21 36.09 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86 11.34 9.41 9.41 9.11 8.81 8.77 8.11 7.36
Sample NO. SK-374 SK-206 SK-294 SK-294 SK-211 SK-230 SK-231 SK-251 SK-251 SK-251 SK-251 SK-251 SK-251 SK-251 SK-251 SK-251 SK-231 SK-231 SK-231 SK-231 SK-231 SK-231 SK-232 SK-245 SK-271 SK-232 SK-271 SK-232 SK-290 SK-354 SK-207 SK-121	EI Mo 16.24 7.63 7.53 6.17 6.00 5.54 5.49 4.80 4.74 4.42 4.24 3.93 3.93 3.69 3.67 3.56 3.41 3.25 3.24	Sample NO. SK-341 SK-374 SK-374 SK-270 SK-3 SK-387 SK-242 SK-342 SK-704 SK-284 SK-286 SK-262 SK-338 SK-212	EI Pb 59.14 38.95 28.84 26.35 21.82 17.79 17.37 14.16 12.88 12.74 12.47 12.07 11.23 10.54 10.40 10.06 7.66 7.49 7.42	Sample NO. SK-341 SK-537 SK-75 SK-75 SK-74 SK-206 SK-249 SK-249 SK-55 SK-249 SK-55 SK-249 SK-249 SK-55 SK-5417 SK-250 SK-342 SK-342 SK-342 SK-342 SK-589 SK-522 SK-228 SK-229 SK-221 SK-223	EI S 25.29 9.86 8.51 5.85 5.28 3.94 3.91 3.80 3.75 3.68 3.59 3.58 3.59 3.58 3.50 3.36 3.19 3.16 3.14 2.71 2.61	Sample NO. SK-341 SK-374 SK-210 SK-284 SK-387 SK-387 SK-387 SK-387 SK-387 SK-387 SK-313 SK-270 SK-262 SK-262 SK-342 SK-262 SK-342 SK-342 SK-262 SK-342 SK-342 SK-342 SK-342 SK-469 SK-212 SK-172 SK-172 SK-192 SK-195 SK-354 SK-102	EI Sb 32.85 25.15 16.99 14.01 12.17 11.81 9.69 8.49 8.26 8.26 8.26 8.26 7.55 7.51 7.51 7.51 7.29 5.86 5.48 5.34 5.34 5.32	Sample NO. SK-210 SK-213 SK-313 SK-272 SK-272 SK-213 SK-212 SK-353 SK-347 SK-347 SK-347 SK-347 SK-427 SK-427 SK-426 SK-231 SK-231 SK-290 SK-365 SK-8 SK-93 SK-364 SK-399 SK-244	EI W 12.65 4.32 3.92 3.80 3.53 3.21 3.18 3.17 2.90 2.89 2.74 2.71 2.58 2.53 2.49 2.49 2.48 2.48 2.44	Sample NO. SK-341 SK-284 SK-32 SK-374 SK-342 SK-374 SK-128 SK-128 SK-128 SK-128 SK-128 SK-128 SK-128 SK-128 SK-128 SK-102 SK-102 SK-105 SK-371 SK-371 SK-338	EI Zn 59.21 36.09 25.96 22.13 16.24 15.62 13.66 12.37 11.91 11.86 11.34 9.41 9.41 9.11 8.81 8.77 8.11 7.36 5.67

جدول شماره ۴-۵- کد نمونه های غنی شده به همراه میزان غنی شدگی عناصر

ضریب همبستگی در واقع مبنای تغییرات دو متغیر نسبت به همدیگر است که می تواند دارای روند افزاینده، کاهنده و یا فاقد هرگونه روند خاص باشد. ضریب همبستگی مبنای محاسبات رگرسیون و پیش بینی متغیری از روی متغیر دیگر و به دست آوردن فرمول دقیق رگرسیون می باشد. اما به نظر می رسد همیشه دامنه همبستگی ها معرف واقعیات پاراژنتیکی عناصر نباشد که دلایل آن به شرح زیر می باشد.

عوامل سیستماتیکی در دستگاه های آنالیز وجود دارد که بعضاً موجب ایجاد همبستگی های کاذب شده و کارشناسان را با مشکل روبرو می نماید. این عوامل در هنگام آنالیز نمونه ها می بایستی شناسایی شده و میزان آن ها به حداقل ممکن برسد.

در مجموعه کل داده ها وجود نمونه های خارج از رده (Outlier) می تواند ضریب همبستگی را افزایش دهد. در صورتی که همبستگی واقعی ممکن است کمتر از حدی باشد که نرم افزار گزارش نموده است.

در مطالعات نیمه تفصیلی و یا حتی تفصیلی همبستگی های یک جامعه معرف دو یا چند زیر خانواده میباشد که در هم ادغام شده و بعضاً همبستگی نسبتاً ضعیفی از خود نشان می دهند. اما اگر زیر خانواده ها که متأثر از عواملی همچون زمین شناسی، آلتراسیون، مینرالیزاسیون و ... می باشند، شناسایی شده و از یکدیگر تفکیک شوند، ضریب همبستگی اعتبار بیشتری خواهد یافت.

ضریب همبستگی متاثر از تعداد نمونه ای است که مبنای انجام محاسبات می باشد، در صورتی که تعداد نمونه ها کم باشد، بعضا ضرایب همبستگی معتبری به دست نخواهد آمد.

علیرغم توجه به مطالب گفته شده محاسبه ضریب همبستگی در سری داده ها امری ضروری است. محاسبه ضریب همبستگی به شیوه های مختلف امکان پذیر است. حساسیت بعضی از آن ها به نرمال بودن تابع توزیع، مانع کارایی در سایر توابع توزیع می گردد. به همین دلیل انتخاب روش بهینه محاسباتی که وابستگی زیادی به نوع تابع توزیع نداشته باشد بسیار حائز اهمیت می باشد.

-۲- مقایسه چند روش در محاسبه ضریب همبستگی

در محاسبه ضریب همبستگی بعضی از متدها فرض نرمال بودن داده ها را به عنوان پیش فرض مطرح کرده اند، در صورت عدم دستیابی به این فرض، این روش ها نتایجی دور از واقعیت را به دست خواهند داد، با توجه به این پیش فرض، لزوم تبدیل داده ها به توزیع نرمال پیش می آید که در این صورت تعبیر و تفسیر همبستگی ها بایستی با دقت بیشتری همراه باشد. از جمله روشهایی که نیازمند جامعه نرمال است می توان به روش ضریب همبستگی پیرسون (Pearson Correlation Coefficient) اشاره کرد که بر اساس فرمول زیر محاسبه می گردد:

$$R_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(n-1) \cdot s_x \cdot s_y}$$

در این فرمول x_i و y_i مقادیر متغیرهای x و y در نمونه i، \overline{x} و \overline{y} میانگین متغیرها، n تعداد نمونهها و S انحراف معیار جامعه است، اما روش محاسبه ضریب همبستگی اسپیرمن به عنوان یک روش ناپارامتری نسبت به توزیع داده ها حساس نمی باشد، این روش به گونه ای رتبه بندی سری افزاینده داده ها را در بر دارد، این ضریب از فرمول زیر محاسبه می شود:

$$R_{s} = 1 - \frac{6\sum(\Delta^{2})}{n(n^{2} - 1)}$$

در این فرمول (Δ^2) جمع مربعات تفاضل شماره دو رتبه در دو سری داده به هم وابسته و n تعداد مشاهدات وابسته به یکدیگر است.

در این پروژه با توجه به تنوع محیط های سنگی از دادههای همگن شده که میتواند به نوعی پاراژنز کانی سازی احتمالی در محدوده را نشان دهد و روش پیرسون استفاده شده است. زیرا؛ همانگونه که در مبحث هیستوگرامها توضیح داده شد، این دادهها تقریباً نرمال و در حد قابل قبول بودهاند. در جدول شماره ۴-۶ ماتریس ضرایب همبستگی نشان داده شده است.

	Ag	As	Au	Ва	Bi	Cd	Co	ç	Cu	Mn	Mo	N.	Pb	s	Sb	Sn	⊒	Ħ	۶	N
Ag	1				2															
As	0.29	1																		
Au	0.05	0.43	1																	
Ва	0.16	0.14	-0.04	1																
₿	0.03	0.01	0.01	0.01	1															
G	0.80	0.19	0.13	0.09	-0.01	1														
ទ	0.10	0.39	0.02	0.19	0.10	0.04	1													
Cr	0.01	-0.01	-0.04	0.01	0.03	-0.01	0.27	1												
Cu	0.13	0.19	0.18	0.06	0.04	0.07	0.31	0.01	1											
Mn	0.02	0.14	0.04	0.16	0.08	0.05	0.22	-0.05	0.10	1										
Mo	0.24	0.47	0.08	0.26	0.02	0.05	0.23	-0.13	0.16	0.28	1									
Ni	0.06	0.20	-0.01	0.08	0.03	0.02	0.56	0.74	0.10	0.08	0.06	1								
Pb	88.0	0.29	0.13	0.23	0.03	08.0	0.05	-0.01	0.10	0.06	0.31	0.04	1							
S	0.60	0.17	0.11	0.09	-0.02	0.57	0.06	0.03	0.11	0.13	0.10	0.04	0.55	1						
sb	0.89	0.42	0.13	0.29	0.02	0.75	0.11	-0.01	0.14	0.11	0.42	0.06	0.90	0.56	1					
Sn	0.20	-0.01	-0.07	0.05	0.25	0.14	0.08	0.06	-0.01	-0.18	-0.04	0.03	0.15	0.06	0.14	1				
=	0.03	-0.01	-0.10	0.19	0.14	-0.03	0.33	0.29	0.00	-0.05	-0.09	0.21	0.00	0.01	-0.01	0.51	1			
⊒	0.03	0.24	0.03	0.14	0.11	-0.04	0.25	0.01	0.07	0.10	0.15	0.02	-0.01	0.19	0.08	0.28	0.37	1		
Z	0.25	0.38	0.08	0.00	0.16	0.04	0.11	-0.04	0.01	-0.04	0.15	-0.03	0.13	0.00	0.25	0.36	0.33	0.26	1	
n	0.84	0.18	0.09	0.16	-0.01	0.95	0.05	0.00	0.09	0.06	0.13	0.02	0.84	0.58	0.83	0.20	0.00	-0.02	0.04	-

-

جدول شماره ۴-۶ ماتریس ضرایب همبستگی

با توجه به ماتریس همبستگی بین عناصر در محدوده مورد مطالعه (جدول شماره ۴-۶) ملاحظه می شود که بیشترین ضرایب همبستگی (قویترین همبستگی) بین مجموعه دوتایی عناصر Cd,Zn,Sb,Pb,Ag با مقدار بیش از 8.8 وجود دارد. Au به عنوان یک عنصر مهم و محوری در کل محدوده بیشترین همبستگی را با As نشان داده است. As نیز به عنوان یک عنصر ردیاب همبستگی متوسطی با Mo, Sb نشان داده است. بنابراین بررسی هاله های عناصر As,Sb می تواند به عنوان کلید اکتشافی Au به شمار آیند.

۲-۴-۷- آنالیز خوشه ای داده ها (دندروگرام)

یکی دیگر از روش های آماری چند متغیره معمول در مطالعات ژئوشیمیایی و تحلیل داده ها استفاده از تکنیک آنالیز خوشه ای می باشد. در این تکنیک می توان به راحتی عناصر پاراژنز و همچنین محیط مربوط به مجموعه موجود در خوشه را تشخیص داد. برای استفاده از این روش محاسبات مختلفی وجود دارد که در این پروژه از روش محاسباتی (Ward's Method) و با داده های همگن شده استفاده شده است.

در این روش، معیار اتصال یک شی (هر متغیری) به یک خوشه یا دو خوشه به یکدیگر، با روش های محاسبه دیگر از جمله، اتصال نزدیک ترین همسایگی، دورترین همسایگی و اتصال میانگین تفاوت دارد. در این روش معیار اتصال یک شی به یک خوشه یا دو خوشه به یکدیگر، ایجاد کمترین افزایش در مجموع مربعات انحراف از میانگین خوشه مورد نظر است. نتایج حاصل از این روش از نظر ظاهری و حفظ سلسله مراتب ساختمانی مناسب می باشند. بدین دلیل روش Ward که در این پروژه استفاده شده به صورت یک انتخاب مناسب در تحلیل خوشهای شناخته شده است (صفحه ۳۵۱ تحلیل دادههای اکتشافی دکتر حسنی پاک، انتشارات دانشگاه تهران).

در شکل شماره ۴–۱۵ دندروگرام مربوط به آنالیز خوشهای دادههای شاخص غنی شدگی آورده شده است. همانگونه که ملاحظه می شود بیشترین شباهت ها در مجموعه عناصر (S,Ag,Sb,Pb,Zn,Cd) وجود دارد که در راس دندروگرام و در یک خوشه جای گرفتهاند. خوشه دوم شامل یک سری عناصر سنگساز و کانسارساز بوده و به خوشه اول متصل شده است. در این مجموعه عناصر کانسار ساز (Mo,Cu,Au,As) در کنار هم قرار گرفتهاند. نحوه اتصال این دو خوشه از اعتبار زیادی برخوردار نمی باشد. مجموعه اول میتواند بیانگر کانیسازی پلیمتال (اپیترمالی) رخ داده در منطقه باشد و مجموعه دوم میتواند در ارتباط با سنگهای ولکانیک و اندیسهای موجود دراین بخش باشد.

شکل شماره ۴–۱۵ – دندروگرام داده های شاخص غنی شدگی به روش Ward

فصل چهارم

۲-۴-۸ آنالیز فاکتوری داده ها

روش های آماری چند متغیره زمانی در علوم به عنوان یک راه حل مطرح گردید که جنبه تأثیر متغیرهای گوناگون با یکدیگر فضایی گسترده تر از یک فضای سه بعدی را طلب می کرد. در این راه ابتدا روش های آنالیز تک متغیره گسترش پیدا کرده و سپس از نتایج آن ها در تکنیک های آماری چند متغیره، و تجزیه تحلیل های چندگانه استفاده گردید.

در داده پردازی چند متغیره بر خلاف تک متغیره، که برای هر نقطه فقط مقدار یک عنصر مورد تجزیه و تحلیل قرار می گیرد، چند متغیر به طور همزمان مورد بررسی و ارزیابی قرار می گیرند.

در بررسی های ژئوشیمیایی اکتشافی برای تفسیر داده ها همیشه نمی توان به نتایج حاصله از تجزیه و تحلیل فاکتوری متکی بود، زیرا این روش طوری طراحی شده که میتواند فقط مجموعه ای از فاکتورهایی که در توزیع آماری یک جمعیت ساده، اثر دارند را مشخص نماید. در حالی که در نواحی که هم از نظر زمین شناسی و هم از نظر نوع توده های کانساری ناهمگن هستند، تعداد بسیار زیادی از فرایندها (فاکتورها) می تواند روی یک متغیر (توزیع فراوانی یک عنصر) اثر گذارند. بررسی اثر تعداد زیادی از ایـن فاکتورها) می تواند روی یک ممکن است خارج از گنجایش این روش تجزیه و تحلیل داده ها باشد (Sourcented)

ممکن است درصد تغییر پذیری هر مولفه مرتبط با تغییر پذیری لیتولوژی یا مشخصه های ژئوشیمیایی مرتبط با کانی سازی باشد. در اکثر موارد اولین و پس از آن گاهی دومین فاکتور می تواند مدل اثر تغییرات لیتولوژی منطقه را بیان کند.

متغیرهای فیزیکوشیمیایی محیطی نظیر pH و Eh، مقدار مواد ارگانیک، دما، فاشار، ترکیب شایمی ا سنگ درونگیر، سرعت فرسایش، شیب توپوگرافی و مقدار ریزشهای جوی متغیرهایی هستند که نقش مهمی را در فرآیندهای کانی سازی ایفا می کنند. در واقع هدف از تجزیه و تحلیل فاکتوری، تا شخیص متغیرهای کنتارل کننده اصلی از متغیرهای فرعی است. در این صورت میتوان با حداقل تعداد متغیرهای فاکتوری، حداکثر تغییار پذیری بین داده ها را توجیه نموده و سهم نسبی هر یک از متغیرهای فاکتوری را درآن مشخص نمود. مؤلفین متعددی خاطر نشان ساختهاند که علی رغم توانایی های آنالیز فاکتوری به عنوان یک روش پیچیده آماری در ارزش گذاری مجموعه های چند متغیره و تعیین متغیر های اصلی، بایستی توجه کرد که در تفسیر نتایج حاصل از این روش بر روی داده های ژئوشیمیایی، همیشه می بایست نتایج حاصله با احتیاط به کار گرفته شده و در صورتی که تفسیر زمین شناسی بر آن ها انطباق ندارد کنار گذارده شوند.

نتایج مربوط به آنالیز فاکتوری در جداول شماره ۴–۷ آورده شده است. همانگونه که ملاحظه می شود ۱۰ فاکتور اول در حدود ۷۵ درصد از کل تغییرات جامعه را نشان داده است. فاکتور اول به تنهایی در حدود ۳۰ درصد از تغییرات را نشان داده و ۴۰ فاکتور بعدی ۷۰ درصد را شامل شده اند. سه فاکتور اول نیز ۵۰ درصد از کل تغییرات را نشان می دهند. فاکتور اول بیشترین اثر پذیری را از مجموعه عناصر سنگ ساز که منعکس

در فاکتور دوم که به تنهایی ۱۳ درصد از کل تغییرات جامعه را در بر گرفته، عناصر S,Sb,Pb,Cd,Ag,Zn نقش به سزایی دارند. این فاکتور گویای کانی سازی پلی متال سرب و روی در منطقه مورد مطالعه است.

طلا به همراه عناصر Cu,As خود را در فاکتور هشتم نمایان ساخته است. این فاکتور تنها ۲/۷ درصد از کل تغییرات جامعه را نشان داده و در مقایسه با فاکتور دوم از اهمیت کمتری برخوردار است. یک چنین نتیجه ای نیز با استفاده از جداول آمار توصیفی ضرایب همبستگی و آنالیز خوشه ای به دست آمد. بنابراین در یک جمع بندی کلی می توان اظهار کرد که کانی سازی اصلی منطقه Zn-Pb و عناصر همرا آن است و در اولویت دوم کانی سازی Au می تواند مورد توجه قرار گیرد.

جدول شماره ۴-۷- نتایج مربوط به محاسبات فاکتوری

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Adequacy.	Measure of Sampling	.865
Bartlett's Test of Sphericity	Approx. Chi-Square df Sig	23142.011 820 000

Total Variance Explained

		Initial Eigenvalu	ies	Extractio	on Sums of Squar	red Loadings	Rotatior	n Sums of Square	ed Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	12.008	29.287	29.287	12.008	29.287	29.287	10.701	26.100	26.100
2	5.333	13.008	42.295	5.333	13.008	42.295	4.976	12.136	38.236
3	2.979	7.267	49.562	2.979	7.267	49.562	2.913	7.104	45.340
4	2.439	5.948	55.510	2.439	5.948	55.510	2.336	5.699	51.039
5	2.028	4.945	60.456	2.028	4.945	60.456	2.125	5.183	56.222
6	1.349	3.291	63.747	1.349	3.291	63.747	1.796	4.380	60.602
7	1.206	2.941	66.688	1.206	2.941	66.688	1.579	3.852	64.454
8	1.122	2.736	69.424	1.122	2.736	69.424	1.524	3.716	68.170
9	1.079	2.632	72.056	1.079	2.632	72.056	1.325	3.231	71.401
10	1.047	2.555	74.611	1.047	2.555	74.611	1.316	3.210	74.611
11	.954	2.328	76.939						
12	.888	2.166	79.105						
13	.828	2.018	81.123						
14	.804	1.960	83.084						
15	.725	1.769	84.852						
16	.599	1.461	86.313						
17	.587	1.433	87.746						
18	.547	1.334	89.080						
19	.511	1.246	90.326						
20	.475	1.158	91.484						
21	.401	.978	92.462						
22	.334	.815	93.277						
23	.321	.782	94.058						
24	.305	.743	94.802						
25	.275	.672	95.473						
26	.257	.628	96.101						
27	.212	.518	96.619						
28	.199	.486	97.105						
29	.171	.416	97.522						
30	.151	.368	97.890						
31	.131	.319	98.209						
32	.129	.315	98.524						
33	.113	.276	98.800						
34	.097	.237	99.037						
35	.087	.213	99.250						
36	.077	.187	99.437						
37	.073	.179	99.616						
38	.053	.129	99.745						
39	.042	.102	99.848						
40	.036	.087	99.935						
41	.027	.065	100.000						

Extraction Method: Principal Component Analysis.

فصل چهارم

					Comp	onent				
	1	2	3	4	5	6	7	8	9	10
EI AI	.927	.005	.105	.122	030	.054	074	061	.114	010
El Ti	.879	005	.262	.026	.053	.092	036	019	024	.105
El Nb	.874	.019	.001	.068	.075	.060	.053	054	015	.013
El La	.873	033	059	.087	.272	.041	.096	.034	.016	042
El Ce	.866	058	057	.044	.237	023	.041	.031	.031	068
ELK	.813	.032	.042	.088	061	.374	.107	001	016	021
El Zr	.799	027	.248	.047	042	.178	047	.020	.049	.132
EIP	.796	008	.215	.038	150	092	.167	.051	120	.103
El Sc	.763	043	.448	.027	.068	.117	107	008	.023	.159
El Th	.761	028	167	.229	148	.127	070	107	.240	262
El Rb	.717	.005	089	.114	089	.455	.113	057	.063	121
El Na	.705	.060	.027	011	149	340	029	100	.296	025
ELV	.674	043	.418	.144	116	.120	007	.045	.028	.127
El Sn	.609	.195	053	.160	217	.153	078	126	.396	149
ELY	.537	087	096	.067	.497	.083	002	090	.069	117
ELLI	.472	.138	.322	.002	.044	.296	084	.077	.064	.333
El Zn	.004	.954	001	048	005	030	.023	.004	.020	024
El Ag	.013	.927	.044	.154	024	.025	.057	003	.031	007
El Cd	019	.925	014	059	.002	031	069	.044	006	021
El Pb	.002	.921	002	.088	.007	069	.152	.036	.008	037
El Sb	030	.895	.039	.234	.021	003	.234	.075	004	.032
EIS	.011	.684	.028	068	.069	.187	073	.105	013	.302
El Ni	.034	.031	.894	.016	.017	032	.086	.004	.020	057
El Cr	.174	.007	.779	031	065	154	117	099	069	015
EI Co	.134	.034	.613	.000	.195	.351	.292	.219	.119	098
EIW	.340	.104	042	.752	.009	.100	110	.097	.087	051
El Be	.501	.107	020	.679	.112	.172	.029	041	.122	.058
EIU	.391	.036	043	.462	144	.094	.103	032	.361	136
El Mn	086	.050	.063	.035	.842	.081	.194	.050	.060	.062
El Ca	252	.005	191	008	.521	249	045	066	174	.289
El Fe	.471	.052	.349	.288	.513	.089	.130	004	.066	.100
El Mg	.245	.049	.419	291	.460	.010	141	.102	.105	001
EI Cs	.378	.007	047	.203	.042	.693	101	094	051	034
ELTI	.417	014	015	.203	.007	.474	.196	.141	.007	.143
El Ba	.241	.163	002	139	.074	027	.743	046	072	.162
El Mo	170	.157	.048	.450	.154	.077	.641	.081	.060	.011
El Au	047	.089	076	.103	016	103	119	.860	066	019
El As	075	.216	.170	.536	.042	.107	.283	.556	109	001
El Cu	060	.092	.119	222	.044	.246	.210	.509	.376	029
El Bi	.124	021	.028	.134	.092	065	050	003	.760	.110
El Sr	.044	.082	084	028	.106	006	.153	045	.081	.841

Rotated Component Matrix

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 11 iterations.

4-4-9 محاسبه مشخصه های ژئوشیمیایی و شاخص های جمعی

یکی از راههای بررسی مقادیر ناهنجار و امکان همسویی آنها با یکدیگر استفاده از محاسبه مشخصههای

ژئوشیمیایی (Geochemical Signature) است، در مورد ضرایب همبستگی، بدیهی است که تمامی دادهها

مورد بررسی قرار گرفته و ممکن است با توجه به مواردی که در سرفصل ضرایب همبستگی به آن اشاره شد، این ضرایب بیانگر واقعی همبستگی یا عدم همبستگی عناصر نباشند. به همین دلیل در محاسبه مشخصه های ژئوشیمیایی، همراهی و همسویی عناصر تنها در ۱۰ درصد بالای جامعه آن ها بررسی می شود. این معیار با توجه به این که محدوده توزیع عناصر تنها به ۱۰ درصد بالای آن ها منحصر می شود، می تواند از اعتبار بیشتری برخوردار باشد. بنابراین فایل داده ها برای تمامی عناصر مرتب (Sort) و ۱۰ درصد بالای آن ها ۱۰۶ نمونه) مشخص شده است. سپس هر کدام از عناصر یکبار به عنوان عنصر مبنا قرار گرفته و داده های آن مرتب شده اند. در رده بندی زیر بهترین مجموعه های به دست آمده معرفی شده اند:

1- ACPSSZ (Ag+Cd+Pb+S+Sb+Zn)

2- AACCM (As+Au+Co+Cu+Mo)

از ۲ مجموعه بالا مجموعه اول که در آنالیز فاکتوری (در فاکتور دوم) نیز به آن اشاره شد، بهعنوان یکی از کانی سازهای احتمالی محدوده در قالب یک نقشه ترسیم شده است. قابل ذکر است که در نتایج آنالیز خوشهای نیز این مجموعه در بالاترین قسمت دندروگرام مشاهده شده است.

ترسیم داده های این مجموعه ها بر اساس جمع مقادیر Z-Score آن هاست و از جمع این مقادیر که به عنوان شاخص های جمعی (Additive Index) نام گذاری شده، داده هایی به دست می آید که به صورت نقشه نمایش داده می شود. لازم به ذکر است که Z-Score نوعی استاندارد سازی داده ها است که بر اساس فرمول زیر محاسبه می شود:

Zscore = (X-Min) / (Min-Max) در این فرمول (X) عیار هر نمونه، (Min) کمترین و (Max) بیشترین مقدار جامعه است. با محاسبه این فرمول نتایج به صورت جامعه ای بین ۰ تا ۱ به دست خواهد آمد که تمامی آنها هم وزن بوده و قابل جمع کردن با یکدیگر هستند.

4-3- پردازش های زمین آماری

تمامی پردازش های آماری تاکنون فارغ از موقعیت مکانی نمونه ها انجام پذیرفته است. در این بخش این نقص به کمک تکنیک های زمین آمار و با استفاده از نرم افزار Surfer 8.0 برطرف، یا به گفته دیگر؛ توزیع فضایی داده ها نیز در پردازش های آماری به کار گرفته خواهد شد. نتیجه این پردازش ها نقشه های آنومالی عناصر خواهد بود. از نتایج واریوگرام می توان دامنه تأثیر، جهت و امتداد بیضوی آنیزوتروپی تخمین را ارزیابی کرد و سپس با روش کریجینگ به تخمین و ترسیم نقشه ها پرداخت.

4-3-1- واریوگرافی

در ترسیم واریوگرام ها کوشش شده از امکاناتی استفاده شود تا بتوان با سود بردن از آنها بهترین مدل ممکن را که تداوم کانی سازی و جهت دار بودن یا غیر جهت دار بودن کانسار احتمالی را مشخص می کند برازش نمود. در این پروژه از داده های همگن شده و در مورد تمامی عناصر از مدل برازش نمایی استفاده شده است. در ابتدای انجام مطالعات واریوگرافی، واریوگرام های غیر جهتی محاسبه و بهترین مدل بر آن ها برازش شد. منظور از واریوگرام غیرجهتی این است تمام تخمین ها، شبکه بندی ها و ... فارغ از جهت باشد و تمام شد. منظور از واریوگرام غیرجهتی این است تمام تخمین ها، شبکه بندی ها و ... فارغ از جهت باشد و تمام شد. منظور از واریوگرام غیرجهتی این است تمام تخمین ها، شبکه بندی ها و ... فارغ از جهت باشد و تمام مناسب ترین جهت ترسیم گردید. مناسب ترین جهت منطبق بر جهتی است که حداکثر تغییرات در آن جهت مناسب ترین جهت ترسیم گردید. مناسب ترین جهتی و غیر جهتی در جدول شماره ۴–۸ آورده شده است. مشاهده می شود. خلاصه مشخصات واریومتری جهتی و غیر جهتی در جدول شماره ۴–۸ آورده شده است. واریوگرام های محدوده اکتشافی ضمن اینکه بسیار تیپیک هستند دو تیپ مختلف با مقادیر دامنه تأثیر کم و واریوگرام های محدوده اکتشافی خوره آنی بهترین واریوگرام در مشاهده می شود. زمان جهتی و غیر جهتی است که حداکثر تغییرات در آن جهت مشاهده می شود. خلاصه مشخصات واریومتری جهتی و غیر جهتی در جدول شماره ۴–۸ آورده شده است. در ایروگرام های محدوده اکتشافی ضمن اینکه بسیار تیپیک هستند دو تیپ مختلف با مقادیر دامنه تأثیر کم و دریگری با دامنه تغییر زیاد را مشخص کرده اند.

شکل شماره ۴-۱۸- نمودارهای واریوگرافی غیرجهتی عنصر Zn در محدوده مورد مطالعه

شکل شماره ۴-۱۹- نمودارهای واریوگرافی جهتی عناصر Ag,As,Au,Ba,Cd,Cu در محدوده مورد مطالعه

شکل شماره ۴-۲۰- نمودارهای واریوگرافی جهتی عناصر Mo,Pb,S,Sb,Tl,W در محدوده مورد مطالعه

0.5-

با توجه به واریوگرامهای غیر جهتی و جدول ارائه شده، عناصر Ba, Tl, S و Ag از استحکام کمتری برخوردار می باشند. از طرفی دیگر بیشترین پایداری واریوگرام در عنصر Zn, Mo, Sb, As محاسبه شده است.

در واریوگرام های جهتی نیز سه عنصر Ba, Tl و S کمترین پایایی را داشته اند و اطلاعاتی مشابه با واریوگرام های غیر جهتی نشان داده اند.

با توجه به اطلاعات واریوگرام های جهتی به نظر می رسد که احتمالاً کانی سازی سرب و روی منطقه در امتداد غالب N30E تا N50E رخ داده و طلا و ارسنیک عمود بر آنها تشکیل شده باشد.

	ى	هتی و جهت	مای غیرج	های واریو گرام ه	، ۴ – ۸ – مشخصه	جدول شماره	
Variable	c0	с	а	Direction	Tolerance	c/c0	(c0/c0+c)*100
				رام غيرجهتي	واريوگ		
Ag	0.95	0.7	375	0	90	0.74	58
As	0.3	0.5	230	0	90	1.67	38
Au	0.77	0.65	300	0	90	0.84	54
Ba	0.58	0.1	350	0	90	0.17	85
Cd	1.5	2	370	0	90	1.33	43
Cu	0.4	0.56	220	0	90	1.40	42
Мо	0.26	0.3	270	0	90	1.15	46
Pb	1.5	2.1	380	0	90	1.40	42
S	0.36	0.1	220	0	90	0.28	78
Sb	0.55	0.66	400	0	90	1.20	45
Tl	0.22	0.057	175	0	90	0.26	79
W	0.18	0.16	375	0	90	0.89	53
Zn	1.18	1.5	400	0	90	1.27	44
				وگرام جهتی	واريو		
Ag	0.89	0.93	420	150	25	1.04	49
As	0.39	0.71	580	160	25	1.82	35
Au	0.68	0.78	290	110	25	1.15	47
Ba	0.53	0.2	420	70	25	0.38	73
Cd	1.3	2.15	400	40	25	1.65	38
Cu	0.38	0.61	260	140	25	1.61	38
Mo	0.2	0.37	310	140	25	1.85	35
Pb	1.5	2.215	400	60	25	1.48	40
S	0.33	0.14	300	110	25	0.42	70
Sb	0.46	0.69	330	40	25	1.50	40
Tl	0.218	0.085	375	160	25	0.39	72
W	0.182	0.183	580	70	25	1.01	50
Zn	0.95	1.77	410	40	25	1.86	35

جهتى	جهتی و	، غير	های	گرام	واريو	های	– مشخصه	٨	-۴	شماره	جدول
------	--------	-------	-----	------	-------	-----	---------	---	----	-------	------

4-4- شرح نقشه آنومالیهای منطقه

4-4-1- آنومالی نقرہ

در نقشه آنومالی حاصل از پردازش دادههای خام نقره (شکل شماره ۴-۲۲)، سه محدوده آنوم الی مهم مشاهده می شود. دو تا از این محدوده های آنومال که عمدتاً منطبق بر معادن سرب و روی هستند، به یک دیگر متصل بوده و در امتداد شمال از شمال غربی سنجو به سمت معادن متروک ه سرب و روی کشیده شدهاند. آنومالی سوم نیز در منتهی الیه شمال محدوده ۵ کیلومتر مربع و بازهم در مجاورت اندیس های سرب و روی قرار گرفته است. با توجه به نقشه زمین شناسی، مراکز این آنومالی ها در واحدهای سنگی کرتاسه واقع شده اند.

نقشه آنومالیهای نقره پس از حذف اثر سنگ و با استفاده از دادههای شاخص غنی شدگی نیز مجدداً ترسیم گردید. در نقشه حاصله که در شکل شماره ۴–۲۳ آورده شده پنج مرکز آنومالی مشاهده می گردد. در این نقشه به دلیل حذف اثر سنگ، اهمیت یکی از آنومالیهای حاصل از دادههای خام نقره که موقعیت آن دقیقاً

منطبق بر محل دهانه تونل و چاههای معدن سرب بود، کاهش یافته ولی دو آنومالی دیگر (حاصل از دادههای خام) کماکان به عنوان آنومالی جایگاه خود را حفظ کردهاند. علاوه بر آنها، آنومالیهای دیگری از نقره در اطراف رودخانه اصلی شرق سنجو در امتداد شمال به جنوب ثبت شده که در این میان آنومالیهای بخش جنوبی منطبق بر واحدهای ولکانیکی ائوسن میباشند. آنومالیهای دیگر نقره، در واحدهای کرتاسه واقع شدهاند.

4-4-7- آنومالی ارسنیک

در نقشه حاصل از پردازش دادههای خام ارسنیک (شکل شماره ۴-۲۴)، چهار مرکز آنومالی مشاهده می شود که سه عدد از این مراکز در یک امتداد شمال غربی- جنوب شرقی قرار گرفته و خط واصل آنها از سنجو در جنوب شرق آغاز شده و به سمت شمال غرب تا غرب معادن سرب و روی کشیده می شود. میانه این خط واصل منطبق بر معادن سرب و روی است. مرکز آنومالی چهارم ارسنیک در شمال محدوده مطالعاتی واقع شده و تقریباً منطبق بر آنومالی های درجه دوم نقره می باشد. از نظر لیتولوژی آنومالی های ارسنیک بخش جنوبی در واحدهای کرتاسه و آنومالی های ارسنیک بخش شمالی در واحدهای ولکانیکی ائوسن جای گرفته اند.

با حذف اثر لیتولوژی و استفاده از دادههای شاخص غنی شدگی، نقشه آنومالیهای ارسنیک مجدداً تهیه شد. همانطور که در شکل شماره ۴-۲۵ مشاهده می شود، تفاوت چ شمگیری مابین تعداد و موقعیت مراکز آنومالیهای حاصل از دادههای شاخص غنی شدگی و دادههای خام وجود ندارد. تنها قدری از وسعت آنومالیها کاسته شده است.

4-4-3- آنومالي طلا

آنومالیهای طلای حاصل از پردازش دادههای خام و شاخص غنی شدگی، عمدتاً در نیمه شمالی محدوده مورد مطالعه واقع شده است. قسمت جنوبی محدوده که روستای سوسنوار در آن قرار گرفته، فاقد هرگونه آنومالی طلا می باشد.

در نقشه حاصل از پردازش دادههای خام (شکل شماره ۴–۲۶)، چهار آنومالی اصلی طلا مشخص شده که سه عدد از آنها در مجاورت هم بوده و میتوان آنها را در مجموع یک آنومالی بزرگ در نظر گرفت. قسمت جنوبی این آنومالی بر دهانه تونل و کارگاههای استخراجی سرب و روی واقع در واحدهای سنگی کرتاسه منطبق میباشد. حاشیه شمالی این آنومالی منطبق بر حاشیه زون گسله و تراستی شمال سنجو بوده و دارای امتداد شمال شرقی– جنوب غربی است. احتمالاً علت اصلی تشکیل آنومالیهای یاد شده، همین زون گسله شمال سنجو و شکستگیهای مربوط به آن میباشد که محل مناسبی را برای حرکت محلولهای گرمابی (هیدروترمال) فراهم ساختهاند. این آنومالیها عمدتاً منطبق بر آنومالیهای ارسنیک بوده و همبستگی خوبی را با آن به نمایش گذاردهاند. مرکز آنومالی چهارم طلا در منتهی الیه شرق محدوده و در شبکههای نمونه برداری ۵۰×۵۰ متر واقع در سنگهای ولکانیکی ائوسن قرار گرفته است. همانطور که در شرح آنومالیهای مس ملاحظه خواهد شد، در این منطقه آنومالیهای طلا و مس بر روی هم منطبق بوده و همبستگی خوبی را با آن به نمایش آنومالیهای طلای حاصل از پردازش دادههای شاخص غنیشدگی نیز تهیه و ترسیم شدهاست (شکل شماره ۴-۲۷)، از مقایسه این آنومالیها با آنومالیهای حاصل از پردازش دادههای خام میتوان نتیجه گرفت که در اینجا مراکز آنومالیهای طلا تغییر مکانی نداشته ولی از وسعت آنها تا حدودی کاسته شده است. علاوه بر آنومالیهای یاد شده، در نقشه آنومالیهای شاخص غنیشدگی طلا، یک آنومالی جدید اضافه شدهاست که در حوالی روستای سنجو، در ولکانیکهای ائوسن و در پایین دست تراورتنهای منطقه جای گرفتهاست. لازم به توضیح است که در نقشه حاصل از پردازش دادههای خام، در این منطقه آنومالی درجه۲ طلا مشخص شده بود. در شرق سنجو نیز آنومالی کوچکی از طلا بدست آمده که در بازدیدهای صحرایی و عملیات کنترل آنومالی آثار و شواهدی از کانیسازی مس و باریت در محدوده آن مشاهده گردید.

شکل شماره ۴-۲۷- آنومالی های شاخص غنی شدگی Au

فصل چھارم

4-4-4 آنومالی باریم

بر اساس نقشه پراکندگی حاصل از پردازش دادههای خام (شکل شماره ۴–۲۸) ، آنومالیهای اصلی عنصر باریم غالباً در نیمه جنوبی محدوده مورد مطالعه واقع شدهاند. تنها آنومالی باریم موجود در نیمه شمالی محدوده، بر دهانههای استخراجی معدن سرب و روی منطبق شده است. مهمترین آنومالی های باریم در اطراف سوسن وار و شرق و جنوب سنجو واقع شدهاند. آنومالی کوچکی نیز در غرب سنجو مشاهده می شود.

بر اساس نقشه آنومالیهای باریم که پس از حذف اثر سنگ و با دادههای شاخص غنی شدگی رسم شده (شکل شماره ۴-۲۹)، آنومالیهای اطراف معادن سرب و روی در نیمه شمالی و آنومالیهای غرب سنجو تقویت شده ولی در نیمه جنوبی به دلیل بالا بودن مقادیر زمینه ای ، آنومالیهای حاصل از دادههای شاخص غنی شدگی تضعیف شده اند. بالا بودن مقدار Ba در نیمه شمالی و در اطراف معادن می تواند نکته مثبت توزیع این عنصر در نظر گرفته شود، زیرا این عنصر با قابلیت تحرک بالا اغلب به عنوان عنصری فوق کانساری عمل می کند.

بر اساس نقشه حاصل از پردازش دادههای خام (شکل شماره ۴-۳۰)، آنومالیهای کادمیم عمدتاً در نیمه شمالی محدوده مورد مطالعه قرار گرفتهاند. سه آنومالی اصلی در این نقشه مشاهده میشود که همگی بر دهانههای استخراجی و اندیسهای سرب و روی منطبق میباشند. با توجه به ویژگیهای شیمیایی تقریباً یکسان عناصر کادمیم و روی، غالباً عنصر کادمیم وارد شبکه کانیهای روی گردیده و با آن همبستگی بسیار بالایی نشان میدهد. بدین ترتیب در مناطقی که شواهدی از کانیسازی سرب و روی وجود دارد، غنی شدگی کادمیم نیز دیده میشود. این نکته به وضوح در شرح نقشههای آنومالی Zn قابل مشاهده است.

در نقشه آنومالیهای کادمیم که پس از حذف اثر لیتولوژی و با استفاده از دادههای شاخص غنی شدگی ترسیم گردید (شکل شماره ۴–۳۱)، آنومالیهای دادههای خام واقع در واحدهای سنگی کرتاسه، بهدلیل بالا بودن مقادیر زمینهای تا حدودی تضعیف شدهاند و آنومالیهای درجه دوم واقع در واحدهای سنگی ائوسن در قسمت جنوبی و در اطراف سنجو بارز شدهاند.

شکل شماره ۴-۳۱- آنومالی های شاخص غنی شدگی Cd

4-4-6- آنومالی مس

بر اساس نقشه حاصل از پردازش دادههای خام (شکل شماره ۴-۳۲)، آنومالیهای مس عمدتاً در نیمه جنوبی محدوده و در محل رخنمون سنگهای ولکانیکی دوره ائوسن واقع شدهاند. تنها آنومالی موجود در نیمه شمالی آنومالی بسیار ضعیفی است که بر محل دهانه و کارگاههای استخراجی منطبق شده است.

در نقشه آنومالیهای عنصر مس که پس از حذف اثر لیتولوژی و با استفاده از دادههای شاخص غنی شدگی ترسیم گردید (شکل شماره ۴-۳۳)، آنومالیهای مهم دادههای خام که از اعتبار و شواهد مطلوب برخوردار بودند، کماکان به عنوان آنومالی در دادههای شاخص غنی شدگی ظاهر شدهاند. در بعضی نواحی مانند شمال سنجو آنومالی از درجه دوم به درجه اول ارتقا یافته و در برخی موارد مانند دهانههای استخراجی آنومالی در دادههای شاخص غنی شدگی تا حدودی تضعیف شده است. همانگونه که در شرح آنومالیهای طلا اشاره شد، همبستگی نسبتاً خوبی بین عناصر Au و Cu و در نیمه شرقی و در شبکه نمونه برداری ۵۰×۵۰ متر وجود دارد.

4-4-7- آنومالی مولیبدن

بر اساس نقشه آنومالیهای حاصل از دادههای خام عنصر مولیبدن (شکل شماره ۴-۳۴)، آنومالیهای این عنصر عمدتاً در اطراف روستای سنجو قرار دارند. روند غالب در توزیع آنومالیهای این عنصر شمال غربی-جنوب شرقی است که تا حدودی هم امتداد با آنومالیهای ارسنیک بوده و تا دهانههای استخراجی معادن سرب و روی ادامه مییابد. همبستگی قابل توجهی بین Cu و Mo وجود نداشته و تنها، آنومالیهای مس اطراف سنجو بر آنومالیهای Mo منطبق شده است.

بر اساس نقشه آنومالیهای حاصل از پردازش دادههای شاخص غنیشدگی عنصر مولیبدن (شکل شماره ۴–۳۵)، هیچ تغییر مکانی در آنومالیهای اصلی مولیبدن مشاهده نشده ولی در برخی موارد از شدت آنها کاسته شده است. آنومالیهای درجه دوم مولیبدن نیز تا حد درجه سوم تقلیل یافته است.

4-4-7- آنومالی سرب

بر اساس نقشه حاصل از پردازش دادههای خام عنصر سرب (شکل شماره ۴-۳۶)، همانگونه که از قبل نیز قابل پیشبینی بود آنومالیهای این عنصر بر اندیسها، شواهد کانیسازی و دهانههای استخراجی این عنصر منطبق شدهاند. همپوشانی نسبتاً خوبی بین آنومالیهای سرب و نقره به چشم میخورد. همچنین همپوشانی تقریباً ۶۰ درصدی بین آنومالیهای سرب و آنومالیهای عناصر روی و کادمیم مشاهده میشود.

در نقشه آنومالیهای سرب که پس از حذف اثر لیتولوژی و با استفاده از دادههای شاخص غنی شدگی رسم شده (شکل شماره ۴-۳۷)، آنومالیهای موجود سنگهای کرتاسه در محدوده بالای دهانههای استخراجی، بعلت بالا بودن مقدار زمینه تا حدودی تضعیف شده و در مقابل آنومالیهای شرق و اطراف سنجو نمایان شدهاند.

4-4-9 آنومالی آنتیموان

همانطور که در شکل شماره ۴-۳۸ مشاهده می شود، توزیع و پراکندگی آنومالی های حاصل از پردازش داده های خام عنصر آنتیموان تا حدود زیادی منطبق و مشابه با آنومالی های عناصر Pb و Ag است. به عبارت دیگر به علت همبستگی خوبی که بین این سه عنصر وجود دارد، در همان محل آنومالی های سرب و نقره و با امتداد مشابه، آنومالی های آنتیموان نیز مشاهده می شود.

این نحوه توزیع در آنومالیهای حاصل از پردازش دادههای شاخص غنی شدگی عنصر آنتیموان نیز به چشم می خورد (شکل شماره ۴–۳۹). بعبارت دیگر همانند عناصر سرب و نقره، در مورد عنصر آنتیموان نیز تضعیف آنومالیهای واقع در اطراف تونلها و دهانههای استخراجی و تقویت آنومالیهای شرق و اطراف سنجو مشاهده می گردد.

4-4-1- آنومالی روی

بر اساس نقشه حاصل از پردازش دادههای خام عنصر روی (شکل شماره ۴- ۴۰)، محل اصلی آنومالیهای این عنصر به ترتیب در شمال محدوده مورد مطالعه، در محل دهانههای استخراجی معدن سرب، شمال شرقی سنجو و در نهایت در مسیر رودخانه شرق سنجو قرار دارد. در این مناطق که شواهدی از کانیسازی سرب و روی به چشم میخورد و بدین ترتیب آنومال بودن این مناطق در مطالعات لیتوژئوشیمیایی تا حدودی از قبل قابل پیشبینی بود.

در نقشه آنومالیهای عنصر روی که پس از حذف اثر سنگی و با استفاده از پردازش دادههای شاخص غنی شدگی ترسیم شده (شکل شماره ۴–۴۱)، آنومالی واقع در شمال محدوده مورد مطالعه کماکان آنومالیهای اصلی بوده و آنومالی منطبق بر دهانههای استخراجی تضعیف و آنومالیهای اطراف سنجو تقویت شدهاند.

4-4-14-فاكتور دوم

در تحلیل فاکتوری مشخص شد که عناصر Sb ،S ،Pb ،Cd ،Ag و Zn نقش به سزایی در تشکیل فاکتور دوم ایفا می کنند. بنابراین اقدام به ترسیم امتیازات فاکتوری فاکتور دوم گردید. در اندیس های جمعی نیز از این مجموعه نقشه ترسیم و تشریح شد. نتیجه امتیازات فاکتور دوم نیز شباهت زیادی با اندیس جمعی مذکور نشان داده است. تمام مراکز اصلی آنومالی در هر دو مورد منطبق بر یکدیگر می باشند. تنها در حواشی آنومالی های درجه دوم اندکی تفاوت بین این دو نقشه وجود دارد که طبیعی است. در شکل شماره ۴-۴۲ نقشه فاکتور دوم نشان داده شده است.

4-4-10 فاكتور هشتم

در ساخت فاکتور هشتم بیشترین اثر مربوط به عناصر As ، Au و Cu بوده است. بنابراین بررسی فاکتور هشتم از اهمیت ویژه ای برخوردار است. آنومالی های اصلی این فاکتور در دو بخش قرار گرفته اند. مهمترین آن در شمال محدوده و در اطراف معادن سرب و روی است. دیگری در شرق محدوده مورد مطالعه و در شبکه نمونه برداری ۵۰×۵۰ واقع شده است. همبستگی قابل قبولی بین این سه عنصر وجود دارد، بنابراین باید به آنومالیهای عناصر Cu و AS که به عنوان پاراژنز اصلی Au محسوب می شوند، در جهت اکتشاف طلا توجه ویژهای نمود. آنومالیهای بدست آمده نیز انطباق خوبی با آنومالیهای As و U نشان دادهاند. در شکل شماره ۴-۳۲ نحوه پراکندگی آنومالی های فاکتور هشتم نشان داده شده است.

4-4-19- شرح آنومالی اندیس های جمعی

ACPSSZ اندیس جمعی -1-19-4

با تحلیل و پردازشهای آماری مشخص شد که مجموعه عناصر Ag، Cd، Ag و Zn یکی از قویترین پاراژنزهای منطقه میباشد. بنابراین پس از استانداردسازی دادههای شاخص غنی شدگی نقشه جمعی این مجموعه تهیه شد تا نحوه پراکندگی آنومالیهای مربوطه تعیین شود. در شکل شماره ۴-۴۴ نحوه توزیع و پراکندگی آنومالیهای این اندیس جمعی نشان داده شده است. همانگونه که ملاحظه می شود بخش اعظم این آنومالیها مربوط به اطراف سنجو بوده و دیگری در شمال محدوده و در محل اندیس و نشانههای معدنی سرب و روی واقع شده است. انطباق تقریباً مناسبی بین آنومالیهای این اندیس با آنومالیهای درجه اول هر یک از عناصر تشکیل دهنده آن وجود دارد. بنابراین نیمه شمالی محدوده در مقایسه با نیمه جنوبی که هیچ آنومالی خاصی در آن مشاهده نشده از اعتبار بیشتری برخوردار است.

AACCM اندیس جمعی -۲-۱۶-۴

علاوه بر اندیس جمعی اصلی محدوده که یک مجموعه پاراژنتیکی هماهنگ را تشکیل داده بودند، انـدیس جمعی دیگری با استفاده از عناصر Au، As، Co، Au و Mo تهیـه و ترسـیم گردیـد. در شـکل شـماره ۴–۴۵ نحوه توزیع آنومالیهای این اندیس نشان داده شده است. همانگونه که ملاحظه می شود آنومالی های اصلی ایـن عناصر بیشتر در شمال و شمال غرب سنجو قرار گرفتهاند. علاوه بر آن در اطراف معادن سرب و روی نیز میتوان غنی شدگیهایی را مشاهده کرد که دهانههای استخراجی سرب و روی را احاطه کرده اند. این انـدیس بیـشترین همپوشانی را با آرسنیک و طلا دارد. نقش عناصر دیگر در این مجموعه، عمدتاً تقویت آنومالیهای حاصل از ایـن محیوشانی را با آرسنیک و طلا دارد. نقش عناصر دیگر در این مجموعه، عمدتاً تقویت آنومالیهای حاصل از ایـن دو عنصر است.

4-4- بررسی آلتراسیون منطقه و ارتباط آن با کانی سازی

بهطور کلی در اغلب موارد، نظر به اینکه حجم فضای دگرسانی بزرگتر از خود کانسار میباشد، لذا احتمال پیدایش رخنمونهای آن بیشتر است. از این نقطه نظر دگرسانیها میتوانند در کشف ذخایر پنهانی مؤثر واقع شوند. در این صورت با تعیین دگرسانی میتوان استنباطهای احتمالی در مورد تیپ کانسار به دست آورد.

برای بررسی پراکندگی آلتراسیونها و چگونگی ارتباط آنها با کانیسازیهای منطقه با استفاده از دادههای لیتوژئوشیمیایی، شاخصهای آلتراسیونی مختلف محاسبه و نقشه آنها ترسیم گردید. این شاخصها شامل شاخصهای سریسیتی، کلریتی، اسپیتز- دارلینگ، قلیایی، هاشی موتو، هاشی موتو تغییر یافته، هاشی گوشی و تهیشدگی قلیایی پیرسون میباشند. در ادامه توصیف هریک از این شاخصها به تفکیک ارائه شده است.

4-5-1- شاخص سریسیتی

در فرآیند دگرسانی سریسیتی با تخریب فلدسپاتها سریسیت تشکیل میشود. با محاسبه شاخص سریسیتی از رابطه $\frac{K_2O}{K_2O + Na_2O}$ و تعیین ناهنجاریهای آن مشخص گردید که معدن سرب و روی سنجو و دهانههای استخراجی آن در داخل آنومالیهای این شاخص واقع شدهاند و ارتباط خوبی میان کانیسازی سرب و روی و آلتراسیون سریسیتی وجود دارد. آنومالیهای طلا واقع در نیمه شمالی نیز به مقدار جزئی بر روی ایـن آلتراسیون قرار گرفته است. البته در شمال غرب و غرب سنجو نیز آنومالیهایی از این شاخص مشاهده میشود و در منتهیالیه شرق محدوده مورد مطالعه نیز انطباق تقریباً مناسبی بین آلتراسیون سریسیتی و آنومالیهای مس

4-5-4 شاخص کلریتی

در فرآیند کلریتیزاسیون، بر اثر تخریب فلدسپاتها از مقدار CaO و Na_2O_2 کاسته و با تشکیل کلریت Mg و Mg افزوده می شود. در مطالعات لیتوژئوشیمیایی می توان با تعیین شاخص کلریتی که از رابطه بر مقدار Fe و Mg

 $(MgO + Fe_2O_3)$ محاسبه میشود به بررسی این فرآیند در منطقه پرداخت. در $(MgO + Fe_2O_3 + 2(CaO + Na_2O))$ شکل شماره ۴-۲۷ نقشه پراکندگی این شاخص نشان داده شدهاست. با اتصال مراکز آنومالیهای این شاخص یک حلقه بیضوی ایجاد میشود که قطر بزرگ آن در امتداد شمال غربی-جنوب شرقی قرار گرفته است. ابتدای این قطر در شمال غرب، در حاشیه بیرونی اندیسها و دهانههای استخراجی قرار گرفته و انتهای آن در جنوب شرق بر آنومالیهای مس منطبق میباشد. کانیسازیها و آنومالیهای ثبت شده طلا، در داخل این بیضوی و در مجاورت آن واقع شدهاند. اندیسهای سرب و روی و عناصر همراه آن نیز در درون این حلقه قرار دارند. در شکل شماره ۴-۲۹ نحوه پراکندگی این شاخص و محل اندیسهای طلا و سرب نشان داده شده است. آنومالیهای

در فرآیند تخریب فلدسپاتها اکسیدهای Na_2O و CaO از سیستم خارج میشوند. بـدین ترتیـب در $Na_2O + CaO$ ، $Na_2O + CaO$ مطالعات ژئوشیمیایی میتوان با محاسبه شاخص قلیایی بـا اسـتفاده از رابطـه $Na_2O + CaO + K_2O$ ، بـه

ارزیابی این فرآیند پرداخت. در شکل شماره ۴-۴۸ نحوه پراکندگی این شاخص نشان داده شده است. همانگونه

که ملاحظه می شود اندیس های معدنی واقع در شمال محدوده مورد مطالعه در میان آنومالی های درجه دوم و سوم این شاخص قرار گرفتهاند. به نظر می رسد که این شاخص، حاشیه خارجی و منتهی الیه زون کانی سازی را شامل شده باشد. از نحوه پراکندگی و توزیع آنومالی های این شاخص می توان یک امتداد غالب را در جهت شمال غربی ح نوب شرقی تعیین نمود. به نظر می رسد که کانی سازی نیز در همین امتداد رخ داده باشد.

4-5-4- شاخص هاشی موتو و هاشی موتو تغییر یافته

نحوه پراکندگی و توزیع این شاخصها شباهت خوبی را با شاخص کلریتی نشان داده است. با این تفاوت که در هاشیموتو تغییر یافته بیضوی آلتراسیون کاملتر بوده و با وضوح بیشتری مشاهده میشود. این دو شاخص بیانگر خروج عناصر Na و Ca ازسیستم طی فرآیند تخریب فلدسپاتها، و اضافه شدن عناصر Mg و K (در شاخص هاشیموتو) و Mg و Fe و K (در شاخص هاشیموتو تغییر یافته) به سیستم طی فرآیند تشکیل کلریت و سریسیت میباشند. این دو شاخص با استفاده از روابط زیر محاسبه می شوند:

$$\frac{MgO + K_2O}{Na_2O + CaO + K_2O + MgO}$$
 = هاشیموتو
ماشیموتو تغییر یافته
موتو تغییر یافته
همانگونه که ملاحظه میشود شباهتی نیز در رابطه محاسباتی هاشیموتو، هاشیموتو تغییر یافته و
کلریتی وجود دارد. اندیسهای معدنی و آنومالیهای ثبت شده در داخل این آلتراسیونها واقع شدهاند و به نوعی
از طریق این سه شاخص میتوان آنومالیهای منطقه را کنترل نمود. بدین ترتیب که آنومالی های مس بر روی
این زون آلتره و آنومالی های سرب و روی و طلا در قسمت داخلی این زون و بلافصل آن واقع شده اند. در
اشکال ۴–۴۹ و ۴–۵۰ نحوه پراکندگی شاخصهای دگرسانی هاشیموتو و هاشیموتو تغییر یافته نشان داده شده

این شاخص از طریق رابطه $\frac{Fe_2O_3}{Fe_2O_3 + MgO}$ به دست میآید که بیانگر افزوده شدن آهن به سـنگ بـه

صورت Fe₂O₃ می باشد. با توجه به نحوه پراکندگی آنومالیهای این شاخص که در شکل شماره ۴-۵۱ نـشان داده شده است، یک حلقه تقریباً کاملی در نیمه شمالی و در امتداد N25W ایجاد کرده است و در مرکـز، خـلا آلتراسیون مشاهده میشود. آنومالیهای ضعیف این شاخص بر روی اندیسهای معـدنی واقـع شـده است. اگـر ارتباط مستقیمی بین غنیشدگی طلا و اکسیدهای آهن وجود داشته باشد، میتوان از ایـن شاخص آلتراسیون استفادههای لازم را برد.

4-5-4 شاخص اسپیتز- دارلینگ

این شاخص از طریق رابطه $\frac{Al_2O_3}{Na_2O}$ به دست میآید و بیانگر تهی شدگی سدیم در سنگ میباشد. با توجه به نحوه پراکندگی آنومالیهای این شاخص که در شکل شماره ۴-۵۲ نـشان داده شـده اسـت، یـک حلقـه تقریباً کامل مشابه شاخص آلتراسیون هاشی گوشی در نیمه شمالی و در امتداد W25W ایجاد کرده است. با این تفاوت که شعاع این حلقه بیضی شکل کوچکتر شده است و انطباق کاملتری بین این شاخص و کـانیسازی ها (عمدتاً سرب و روی) به چشم می خورد. در نیمه جنـوبی هـیچ گونـه آثـاری از شـاخص آلتراسیون اسـپیتز – دارلینگ وجود ندارد. کما اینکه در این بخش نیز کانی سازی نیز مشاهده نشده است. در بین کل شـاخص هـای دگرسانی مورد بررسی، این شاخص بیشترین انطباق را با دهانه های استخراجی سرب و روی نشان داده است.

در شکل شماره ۴–۵۳ دندروگرام آنالیز خوشهای بین شاخصهای آلتراسیون و عناصر کانسارساز ارائه شده است. این دندروگرام در کل منطقه و با کلیه نمونهها محاسبه شده است. همانطور که ملاحظه می شود عناصر کانسارساز گروه سرب و روی کمترین همبستگی را با شاخص های آلتراسیون نشان دادهاند. قویترین همبستگی بین این دو گروه متغیر (شاخص آلتراسیون و کانیسازی)، بین عناصر طلا، مس و بیسموت و شاخص دگرسانی قلیایی و پس از آن شاخصهای هاشی گوشی، اسپیتز-دارلینگ، سریسیتی و تهی شدگی قلیایی مشاهده شده است. بنابراین از شاخص قلیایی که حاصل تخریب فلدسپاتها و خروج سدیم و کلسیم از سیستم است و همچنین شاخص هاشی گوشی که نشاندهنده افزوده شده آهن به محیط سنگی به صورت اکسید می باشد می توان کلید اکتشافی مناسبی ارائه کرد. در مشاهدات صحرایی هر دو پدیده تائید شده است.

شکل شماره ۴-۵۳- آنالیز خوشه ای بین متغیرهای عنصری و شاخص های آلتراسیون

۴-6- موقعیت سطح فرسایش نسبت به توده کانساری

در این منطقه با تشکیل نسبت معرف
$$\frac{Cd + Sb}{Cu + Mo}$$
نسبت به بررسی و تعیین سطح فرسایش اقدام گردید.
عناصر Cd و Cb به عنوان عناصر حرارت پائین و محرک که در بالای کانسار قرار می گیرند (عناصر فوق
کانساری) محسوب شده و عناصر Cu و Mo که حرارت بالاتری دارند و عموماً در پایین ترین قسمت کانسار
(تحت کانسار) جای می گیرند تعریف شدهاند. عناصر Pb و Zn نیز به عنوان کانسارساز می باشند. نحوه توزیع
آنومالی های نسبت معرف $\frac{Cd + Sb}{Cu + Mo}$ در شکل شماره ۴-۵۴ نشان داده شدهاست.

اگر دهانهها و تونلهای استخراجی سرب را به عنوان مبنای مقایسهای قرار دهیم که آنومالیهای درجه ۲ را نشان داده، احتمالاً میتوان به این صورت نتیجه گرفت که:

۱ – آنومالیهای درجه اول واقع در شمال محدودههای استخراجی نشان میدهند که حدوداً در عمق ۲۰۰ تا ۳۰۰ متری احتمالاً کانیسازی سرب و روی وجود دارد.

۲- در آنومالیهای اطراف سنجو نیز یک چنین شرایطی فراهم است ولی بهنظر میرسد عمق کانیسازی کمتر باشد.

۳- با بررسی گرادیان و تغییرات توزیع و پراکندگی آنومالیهای نسبت معرف ساخته شده میتوان چنین پیشبینی کرد که احتمالاً آنومالی سرب و روی در هسته یک تاقدیس مایل به مرکزیت دهانههای استخراجی و در سنگهای کرتاسه و در امتداد محوری شمالغرب- جنوبشرق تا شمال- جنوب تشکیل شدهاست که با فرسایش این تاقدیس نشانهها و آثار سرب و روی در سطح ظهور یافته و هرچه از مرکز و هسته دور می شویم عمق کانیسازی بیشتر می شود. شیب زون مینرالیزه نیز از شمال شرق به جنوبغرب است.

۴- اگر فرض شود که بخشی از کانیسازی طلا در منطقه مورد مطالعه بهعنوان محصول جانبی سرب و روی است بنابراین احتمال وجود کانیسازی این عنصر در اعماق دور از ذهن نمیباشد. به صورت شماتیک در شکل شماره ۴-۵۵ سطح فرسایش کنونی و نحوه کانیسازی نشان داده شدهاست.

۵- در شمال و شمالغرب سنجو نیز یک مرکز آنومالی از نسبت معرف مشاهده می شود که طلا نیز در آن بخش آنومالی نشان داده است. سنگهای این منطقه عمدتاً ولکانیکی و مربوط به دوره ائوسن بوده و بهنظر می رسد که کانی سازی در طبقات زیرین و در سنگ میزبان کرتاسه رخ داده باشد. بنابراین عمق کانی سازی در این بخش بیش از ۳۰۰ متر تخمین زده می شود. رگه و رگچه هایی از کانی سازی که عمدتاً حاوی باریت هستند در این محدوده مشاهده می شود که نشان دهنده عملکرد و وجود محلول گرمابی کانه ساز (هیدروترمال) در اعماق است که رگچه های حرارت پایین آن توانسته اند به سطح راه یابند.

شکل شماره ۴-۵۵- نمایش شماتیک موقعیت سطح فرسایش کنونی و نحوه کانیسازی

4-7- شرح نقشه اولویت بندی آنومالی ها

در نهایت با در نظر گرفتن کلیه اطلاعات و نتایج بدست آمده، اقدام به معرفی آنومالیهای درجه اول، دوم و سوم گردید.

۱- محدوده اول که در آن کانیسازی سرب و روی و دهانه ها و تونلهای استخراجی معدن مشاهده میشود در اولویت اول قرار گرفته است. این محدوده با وسعتی در حدود ۲/۰ کیلومتر مربع، در شمال منطقه مورد مطالعه واقع شده است. در این زون کانیسازی، آنومالی عناصر Cd، Zn، Pb و (Ag) به ثبت رسیده مورد مطالعه واقع شده است. در این زون کانیسازی، آنومالی عناصر عام Cd، Zn، Pb و (Ag) به ثبت رسیده است. همچنین در برخی از قسمتهای این محدوده در رگچههای حاوی اکسیدهای آهان، عیار طلا افزایش چشمگیری داشته و تا مقدار ۵/۶ گرم بر تن مشاهده شده است. بیشترین مقدار طلا همراه با سنگ مینرالیزه حاوی طالع و تا مقدار ۵/۶ گرم بر تن مشاهده شده است. بیشترین مقدار طلا همراه با سنگ مینرالیزه چشمگیری داشته و تا مقدار ۵/۶ گرم بر تن مشاهده شده است. بیشترین مقدار طلا همراه با سنگ مینرالیزه حاوی طوی کاریسادی در حدوده را مینای معنای این محدوده را مینای مقدار ۵/۶ گرم بر تن مشاهده شده است. بیشترین مقدار طلا همراه با سنگ مینرالیزه حاوی طوی کاری داشته و تا مقدار ۵/۶ گرم بر تن مشاهده شده است. بیشترین مقدار طلا همراه با سنگ مینرالیزه حاوی طوی کاری داشته و تا مقدار ۵/۶ گرم بر تن مشاهده شده است. بیشترین مقدار طلا همراه با سنگ مینرالیزه حاوی طوی کا و کر کرتاسه تشکیل داده اند.

۲- محدوده دوم در منتهی الیه شرق منطقه مورد مطالعه تعیین شده است. در این محدوده عناصر Cu و Au غنی شدگی نشان داده اند. بیشترین مقدار Au در این بخش از منطقه در حدود ۱/۶ گرم بر تن در ترانشهها بوده است. وسعت آن نیز ۲۵ هکتار است. بیشترین رخنمون سنگی این منطقه مربوط به واحدهای ولکانیکی ائوسن می باشد. این محدوده پس از معادن متروکه سنجو در اولویت دوم جای می گیرد.

۳- سومین محدوده در امتداد دو محدوده قبلی و میان آن دو قرار گرفته است. این محدوده با وسعتی معادل ۳۶ هکتار در شمال سنجو واقع شده است که در آن عناصر Pb، Cd و Zn آنومالی نشان دادهاند. از آنجایی که طلا و آثار و شواهد معدنی در این قسمت قرار نگرفته است، این محدوده در اولویت سوم رتبهبندی شده است. امتداد غالب روند کانیسازی و خط واصل این سه محدوده M30W است.

در شکل شماره ۴-۵۶ موقعیت آنومالیها و رتبهبندی آن بر روی نقشه توپوگرافی نشان داده شده است.

فصل ينجم تلفيق زمين شناسي و مطالعات ليتوژئوشيميايي

۵-۱- مقدمه

در این فصل از گزارش سعی بر تلفیق اطلاعات لیتوژئوشیمی و زمین شناسی بوده است. بدین مفهـوم کـه بتوان ارتباطی بین آنومالی ها و اطلاعات زمین شناسی برقرار کرد و نتیجه مطلوب را از آن بدست آورد.

برای آسان نمودن این پردازشها نقشه زمین شناسی خلاصه شده تهیه گردید. در این نقشه واحدها بر اساس لیتولوژی و سن تشکیل تفکیک شده و در یک گروه قرار گرفتند. بهعنوان مثال واحد ائوسن که عمدتاً از جنس توف و سنگهای آذرآواری هستند در کنار یکدیگر و تحت عنوان واحد خلاصه شده ائوسن قرار گرفتند. پس از آن اقدام به تهیه نقشه گسلهای منطقه گردید که گویای وضعیت تکتونیکی منطقه میباشد. در نهایت نقشه آنومالی عناصر کانسارساز در دو حالت (داده خام و شاخص غنی شدگی) هر یک در صفحهای جداگانه نشان داده شده است. با این عمل به راحتی می توان ارتباط بین آنومالیها، ساختارهای تکتونیکی، لیتولوژی و

در مراحل بعدی مقطع زمین شناسی، ترسیم شده و در همان مقطع، آنومالی های لیتوژئوشیمی رسم شده است. وضعیت آلتراسیون نیز در این مقاطع مورد بررسی قرار گرفته است.

سپس مجدداً پردازش های آماری در منطقه کانی ساز اولویت اول و با نمونه هایی که در این محدوده جای گرفته اند صورت پذیرفته است تا وضعیت و ارتباط بین عناصر در زون کانی سازی تعیین گردد.

5-4- تلفیق زمین شناسی و لیتوژئوشیمی با داده های خام

دگرسانی سریسیتی، کلریتی، اسپیتز- دارلینگ و هاشی موتو تغییر یافته بهوضوح مشاهده میشود و ارتباط تنگاتنگی بین آنومالیهای لیتوژئوشیمی عناصر یاد شده و زونهای شاخصهای دگرسانی سریسیتی و اسپیتز-دارلینگ دیده می شود.

دسته دوم از عناصر شامل Cu و Ba میباشند که وضعیت کاملاً متفاوتی با گروه اول دارند. سنگ میزبان این دو عنصر واحدهای مربوط به ائوسن میباشند که عمدتاً حاوی سنگهای آندزیتی، ولکانیکی و آذرآواریها میباشند. گسترش این واحدها اکثراً در نیمه جنوبی محدوده مورد مطالعه دیده میشود. وضعیت ساختارهای گسلی و شکستگی نیز تا حدودی متفاوت و با دانسیته کمتر از نیمه شمالی است. آلتراسیون وابسته به این تیپ کانیسازی نیز در نقشه شاخص دگرسانی نشان داده شده است. این شاخصها شامل دگرسانیهای سریسیتی و کلریتی است که این هم یکی دیگر از تفاوت آنومالیهای این دو مجموعه میباشد.

عنصر طلا وضعیتی مشابه به این دو مجموعه را نشان داده است. در پارهای از مشخصات مشابه آنومالیهای نیمه جنوبی و در پارهای دیگر مشابه زون کانیسازی نیمه شمالی میباشد ولی بیشتر مشخصات آن نزدیک به زون کانی ساز سرب و روی میباشد.

شکل شماره ۵-۱- تلفیق نقشه زمین شناسی و لیتوژئوشیمی با داده های خام

5-3- تلفیق زمین شناسی و لیتوژئوشیمی با داده های شاخص غنی شدگی

از آنجایی که مقدار زمینه در واحدهای زمینشناسی کرتاسه عموماً مقداری بالا بوده است در دادههای شاخص غنی شدگی این داده ها به عدد یک نزدیک شده و به عبارتی دیگر این گونه آنومالی ها حذف شده اند و به دنبال آن آنومالی های ضعیف و درجه دوم خود را نمایان ساخته اند. وضعیت پراکندگی آنومالی عناصر Zn، Cd دنبال آن آنومالی های ضعیف و درجه دوم خود را نمایان ساخته اند. وضعیت پراکندگی آنومالی عناصر Zn، Cd ماه Sb Sb do g تا حدودی Ag مشابه یکدیگر می باشد. بیش از ۲۵ درصد آنومالی های این عناصر در سنگ میزبان کرتاسه جای گرفته اند. سیستم گسلی با تراکم بالا مشخصه بارز در این مناطق می باشد. برای این کانی سازی ها دو امتداد غالب عمود بر هم می توان متصور شد. این دو امتداد (Interesting) و (NNE-SSW) می باشند. امتداد غالب گسل ها نیز در همین دو راستا قرار دارد. انواع شاخص های آلتراسیون نیز منطبق با ایـن آنومالی ها هستند. این انطباق بیشتر با زون سریسیتی است.

دسته دوم از عناصر شامل Ba ،As ،Au و Cu می باشند. این عناصر اکثراً در کنتاکت بین سنگ های کرتاسه و ائوسن جای گرفته اند ولی پراکندگی آنها بیشتر در بخش ائوسن می باشد. انواع شاخص های دگرسانی در زون های آنومالی نیز مشاهده می شود ولی بیشترین همپوشانی مربوط به شاخص های سریسیتی و کلریتی است.

در شکل شماره ۵-۲ نقشههای مربوط به آنومالیهای شاخص غنی شدگی، زمین شناسی، سیستمهای گسلی و شاخصهای آلتراسیون نشان داده شدهاند.

6-4- پردازش آماری زون کانی سازی اولویت اول

با استفاده از ۹۷ نمونه جای گرفته در زون کانیسازی شکل شماره ۵-۳، اقدام به محاسبات آمار توصیفی گردید که نتایج قابل قبولی بدست آمد. در این محاسبات از مجموعه عناصر کانسار استفاده گردید.

همانگونه که در جدول شماره ۵-۱ ملاحظه می شود بیشترین ضریب تغییرات به ترتیب مربوط به عناصر همانگونه که در جدول شماره ۵-۱ ملاحظه می شود بیشترین ضریب تغییرات به ترتیب مربوط به عناصر ۲۸ ppb می باشد. میانگین عنصر روی در این زون ۲۳۶۲ گرم بر تن و طلا در حدود Pb,Ag,Au,Bi,Cd,Zn می باشد. بیشترین مقادیر چولگی نیز به ترتیب مربوط به عناصر Cu,Mn,Zn,Au ... است.

بنابراین با استناد به جدول توصیفی، کانیسازی پلی متال رگهای (Ag,Au),Pb,Cd,Zn) را می توان انتظار داشت. در زون کانیسازی شده اولویت اول، همبستگی بین عناصر مورد بررسی قرار گرفت که ضرایب همبستگی آنها در جدول شماره ۵-۲ آورده شده است. همانطور که مشاهده می شود بیشترین همبستگی بین عناصر Pb-Zn,Cd-Pb,Zn-Cd,Pb-Ag با حداکثر مقادیر همبستگی برقرار است. طلا بیشترین همبستگی را به ترتیب با As (R=0.83) Sb و C6 (r=0.63) نشان داده است. از آنجایی که نمونههای موثر در محاسبات از داخل زون کانیسازی شده بودهاند اعداد و ارقام مربوط به همبستگی در حد بالا محاسبه شدهاند و از اعتبار لازم برخوردار می باشند.

بر روی ۹۷ نمونه واقع در زون کانیسازی شده پلیمتال Zn-Pb و عناصر همرا آنها آنالیز خوشهای انجام پذیرفت. نتیجه این عملیات در شکل ۵-۴ نشان داده شده است. همانگونه که ملاحظه میشود در بالاترین بخش دندروگرام، عناصر Pb,Sb,Ag,Zn,Cd که مربوط به زون کانیسازی می باشند، بهعنوان مهمترین خوشه جای گرفتهاند. (در ۲۲ نمونه قرار گرفته در این محدوده، مجموع Pb+Zn بیش از ۱ درصد در نمونههای لبپری بوده است که نشاندهنده کانهزایی سرب و روی در این منطقه میباشد.) در خوشهای دیگر عناصر Mo,Au,As و شاخص دگرسانی هاشی گوشی در کنار یکدیگر قرار گرفتهاند. جالب اینکه در برداشتهای صحرایی طلا در رگچههای حاوی اکسید و هیدروکسید آهن و سنگهای رنگ آمیزی شده با اکسیدهای آهن مشاهده شده است. زونهای دگرسانی قرار گرفته است. زون کانی سازی سرب و روی نیز در داخل زونهای دگرسانی قـرار گرفتـه است. در انتهای دندروگرام که از اهمیت کمتری برخوردار است، عناصر Cu,S,Ba و شاخص دگرسانی قلیایی در یک خوشه با هم آمده اند.

بنابراین می توان گفت که به احتمال زیاد کانی سازی اصلی منطقه مربوط به عناصر پاراژنز Zn-Pb و عناصر همراه آن شامل Cd,Sb,Ag می باشد. پس از آن کانی سازی Au از اهمیت بعدی و در اولویت دوم قرار می گیرد. کانی سازی های Ba و Cu در این زون حائز اهمیت نبوده و فاقد اعتبارند.

								224	245	266 0	287 0	310	334
ſ													-
	62 0	89 0	12 0	9	173 0	5	202 0	223 0	244 0	265 0	286 0	309 0	333 0
	61 0	88 0	12 0	8	172 0	2	201 0	222	243 0	264 0	285 0	308 0	332 0
	60 0	87 0	12	7	171 0		200 0	221 0	242 0	263 0	284 0	307 0	331 0
	59 0	86 0	12	6	170 0)	199 0	220 0	241 0	262 0	283 0	306 0	330 0
	58 0	85 0	12	5	169 0	,							
	57 0	84 0	12 0 12	4 1 C	48 168 0 47 167								
	56 0	83 0		2 1. 2 1.	46 166 45 165	5							
	55 0	82 0 81	104 12 0 0 103 11	0 1	44 164 0 43 163	· 182	2						
					42 162 41 161 40 160		0 9 8						

شکل شماره ۵-۳- زون کانی سازی اولویت اول همراه با نمونه های جای گرفته در آن

	Mean	Median	Std. Deviation	Skewness	Minimum	Maximum	C.V(%)					
Zn	2362.88	148	8048.28	5.70	9.8	63300	340.61					
Cd	28.09	1	69.30	3.99	0.075	482	246.69					
Bi	0.05	0	0.13	4.01	0	0.8	239.40					
Au	28.12	10	62.47	6.47	0.75	548	222.16					
Ag	4.78	0.6	10.27	2.97	0.07	47.5	214.65					
Pb	2582.26	139	5523.74	2.83	4.4	29900	213.91					
Sb	10.57	3.5	18.49	3.93	0.4	131	174.97					
Cu	36.11	20.8	57.83	4.40	3.4	414	160.15					
Ва	568.86	209	664.54	1.32	49.7	2390	116.82					
As	74.85	42.6	84.34	1.77	1.6	416	112.69					
Мо	4.75	2.8	4.62	1.78	0.5	21.5	97.17					
Mn	1519.19	1250	1031.87	5.45	585	9600	67.92					
S	854.85	730	483.32	1.84	140	2980	56.54					
Fe	21412.16	19300	11808.47	1.62	6990	67900	55.15					

جدول شماره ۵-۱- پارامترهای آماری اولویت اول

نانی سازی اولویت اول	مورد بررسی در زون ک	ممبستگی بین عناصر	۲-۲- ضرایب ه	جدول شماره ۵	

	Ag	As	Au	Ва	Bi	Cd	Cu	Fe	Mn	Мо	Pb	S	Sb	w	Zn
Ag	1.00														
As	0.61	1.00													
Au	0.49	0.83	1.00												
Ва	0.59	0.32	0.31	1.00											
Bi	-0.25	-0.05	0.08	0.03	1.00										
Cd	0.82	0.55	0.44	0.57	-0.29	1.00									
Cu	0.51	0.47	0.45	0.52	0.09	0.41	1.00								
Fe	-0.50	-0.41	-0.34	-0.29	0.42	-0.57	-0.16	1.00							
Mn	0.10	0.03	0.00	-0.01	-0.17	0.17	0.01	0.30	1.00						
Мо	0.63	0.53	0.43	0.38	-0.18	0.58	0.45	-0.29	0.35	1.00					
Pb	0.91	0.61	0.46	0.60	-0.27	0.90	0.50	-0.50	0.18	0.63	1.00				
S	0.70	0.42	0.35	0.59	-0.09	0.58	0.36	-0.30	0.14	0.45	0.63	1.00			
Sb	0.86	0.78	0.63	0.51	-0.21	0.78	0.53	-0.51	0.08	0.63	0.85	0.61	1.00		
W	-0.32	-0.03	-0.05	-0.24	0.41	-0.37	-0.21	0.41	-0.13	-0.29	-0.36	-0.36	-0.25	1.00	
Zn	0.81	0.55	0.41	0.60	-0.18	0.91	0.43	-0.48	0.13	0.53	0.89	0.54	0.78	-0.29	1.00

Dendrogram using Ward Method

6-6- پردازش آماری زون کانی سازی اولویت دوم

با استفاده از ۵۱ نمونهای که در زون کانیسازی اولویت دوم (شکل شماره ۵-۵) قرار گرفته است، اقدام به پردازشهای اولیه و مقدماتی آماری گردید. در جدول شماره ۵-۳ نتایج محاسبات آمار توصیفی این ۵۱ نمونه نشان داده شده است. همانگونه که مشاهده میشود بیشترین ضرایب تغییرات مربوط به عناصر ۹u و Cu است. بیشترین چولگی نیز به ترتیب در عناصر Au,Pb,As,S,Cu دیده میشود. مقدار میانگین طلا در ایس زون در حدود ۱۶ ppb و میانه آن ۳ ppb است.

Cu با استناد به جدول مذکور می توان نتیجه گیری کرد که کانی سازی رخ داده در این محدوده بی شتر می می است می با می با می با می این منطقه در مقایسه با می باشد که به همراه آن در بعضی قسمت ها Au افزایش مقدار نشان داده است. طلای این منطقه در مقایسه با زون کانی سازی اولویت اول از اهمیت کمتری بر خور دار است.

با استفاده از همان ۵۱ نمونه ضرایب همبستگی بین عناصر محاسبه گردید که نتیجه قابل قبولی به دست نیامد. در جدول شماره ۵-۴ ماتریس همبستگی بین عناصر نشان داده شده است. بیشترین همبستگی در این زون بین عناصر Mn-Cd با r=0.62 برقرار میباشد. پس از آن S-Mn و Sb-S و Ag-W در ردیفهای

بعد قرار گرفتهاند. طلا بیشترین همبستگی را به ترتیب با عناصر Cu,Sb,S ناشان داده است. بهطور کلی همبستگی بین عناصر در این زون ضعیف میباشد.

در شکل شماره ۵-۶ دندوگرام مربوط به زون کانیسازی اولویت دوم نشان داده است. فارغ از خوشه اول که مربوط به شاخص دگرسانی است عناصر (As,Ag,Sb,S) و (Bi,W,Au) در کنار هم قرار گرفتهاند. مس و منگنز با شاخصهای دگرسانی قلیایی و تهیشدگی قلیایی بیشترین ارتباط و شباهت را نشان میدهد که بهدنبال آنها Ba,Zn,Pb,Cd,Mo آمدهاند. ولی همانگونه که در بخش ضرایب همبستگی گفته شد این همبستگیها و شباهتها از اعتبار لازم برخوردار نمیباشد. نتیجه کلی اینکه با توجه به شواهد صحرایی و اطلاعات ژئوشیمی زون کانیسازی اولویت دوم تنها از Cu غنیشدگی نشان میدهد که در برخی فست مید که غنیشدگی نسبی نشان داده است.

	482	503	527	538	564	575
			526 0	537 0	563 0	574 0
	4 <mark>8</mark> 1	502 0	525 0	536 0	562 0	573 0
			524 0	535 0	561 0	572 0
	4 <mark>8</mark> 0	501 0	523 0	534 0	560 0	571 0
			522 0	533 0	559 0	570 0
457	479 0	500 0	521 0	532 0	558 0	569 0
418 434 456	478	499	520		557	
417 433 455 °	463 4 7 7					
432 454 0	476					

شکل شماره ۵-۵- زون کانی سازی اولویت دوم همراه با نمونه های جای گرفته در آن

Variable	Mean	Median	Std. Deviation	Skewness	Minimum	Maximum	C.V(%)
Cu	106.38	35.1	267.53	6.27	5	1900	251.47
Au	15.73	3	31.39	2.58	0.75	145	199.62
Bi	0.09	0	0.14	2.01	0	0.6	157.26
S	1236.47	850	1938.36	5.49	120	13600	156.77
Pb	Pb 16.62 11.1		22.46	3.44	0	123	135.10
As	As 15.97 12.2		15.63	3.97	3.8	102	97.90
Sb	1.57	1	1.41	2.42	0.3	7	90.08
Cd	0.21	0.2	0.17	2.32	0	1	80.27
Ва	700.45	575	499.41	0.65	66.5	1930	71.30
Ag	0.34	0.29	0.21	1.21	0.04	0.93	60.31
w	1.05	0.9	0.59	1.30	0.3	2.9	55.74
Zn	75.05	66.4	41.18	0.93	19.7	181	54.87
Mn	2347.16	2560	1193.60	0.02	278	5090	50.85
Мо	1.42	1.3	0.59	1.05	0.5	3.3	41.29
Fe	33378.43	32500	9058.28	0.44	16100	58000	27.14

جدول شماره ۵-۳- پارامترهای آماری اولویت دوم

جدول شماره ۵-۴- ضرایب همبستگی بین عناصر مورد بررسی در زون کانی سازی اولویت دوم

	Ag	As	Au	Ва	Bi	Cd	Cu	Mn	Мо	Pb	S	Sb	Zn	w
Ag	1.00													
As	0.38	1.00												
Au	0.13	0.25	1.00											
Ва	-0.36	-0.14	-0.03	1.00										
Bi	0.22	0.11	0.08	0.03	1.00									
Cd	-0.13	-0.08	-0.06	0.39	0.11	1.00								
Cu	0.32	0.23	0.32	-0.03	0.31	0.18	1.00							
Mn	-0.25	-0.17	0.22	0.32	-0.09	0.62	0.06	1.00						
Мо	0.30	-0.07	-0.34	-0.20	-0.08	-0.03	-0.29	-0.27	1.00					
Pb	0.26	0.17	-0.20	0.03	0.08	0.32	-0.06	-0.09	0.36	1.00				
S	-0.18	-0.07	0.40	0.36	-0.18	0.33	0.08	0.54	-0.14	-0.06	1.00			
Sb	0.07	0.22	0.40	0.25	-0.18	0.13	0.06	0.17	-0.03	-0.04	0.52	1.00		
Zn	0.19	0.07	-0.18	-0.10	0.29	0.01	0.17	-0.09	0.10	0.35	-0.28	-0.19	1.00	
W	0.49	0.39	0.19	-0.05	0.34	-0.40	0.15	-0.33	0.05	0.11	-0.15	0.15	0.31	1.00

اکتشاف لینوژئوشیمیایی منطقه طلا دار سوسن وار – **تلفیق زمین شناسی و مطالعات لیتوژئوشیمیایی**

Dendrogram using Ward Method

فصل پنجم

شکل شماره ۵-۶- دندوگرام مربوط به زون کانی سازی اولویت دوم

5−6- آنالیز XRD و تلفیق آن با نتایج زمین شناسی و ژئوشیمی

بس از حصول نتایج لیتوژئوشیمی و پردازش آماری دادهها و تهیه نقشه زمینشناسی ۱۰۵۰۰۰ تعداد ۱۰ نمونه از پودرهای حاصل از نمونه های لیتوژئوشیمی در امتداد مقطع زمین شناسی 'AA که از معادن متروکه سنجو گذر کرده و بیشترین تنوع لیتولوژی را قطع کرده انتخاب و به آزمایشگاه ارسال گردید. نتایج بدست آمده در جدول شماره ۵-۵ نشان داده شده است.

در این جدول نوع لیتولوژی، کانیهای مشاهده شده در مطالعه XRD، شاخصهای دگرسانی، آنالیز عناصر Fe,Zn,Sb,Pb,Cd,Au,Ag و مختصات نمونه ها آورده شده است.
فصل پنجم

در میانه مقطع 'AA برداشت شدهاند، اندازه گیری شده است. در نمونه ۱۹۵ کانی ثانویه روی (همی مورفیت) و به همراه آن کانی های کوارتز، کلسیت و باریت نیز مشاهده شده است. کانی های کلسیت و کوارتز در ارتباط با لیتولوژی و سنگ میزبان میباشند. البته در این محدوده گاهاً رگچه های باریت نیز مشاهده می شود که در مطالعات XRD نیز به خوبی نمود پیدا کرده است. در نمونه ۲۱۰ کانی ثانویه سرب (سروزیت) به همراه کلریت و گوتیت مشاهده می گردد که اثر آن در نتایج لیتوژئوشیمی به صورت مقادیر بالای Ag,Fe,Pb دیده می شود. کانی های دیگر این نمونه، منعکس کننده نوع لیتولوژی می باشند. یک چنین شبیه سازی در نمونه های دیگر نیز به چشم می خورد. با توجه به شاخص های دگرسانی مشخص می شود که در قسمت ابتدای پروفیل در جنوب غرب محدوده معدنی تمرکز آلتراسیون های کلریتی و سریسیتی بیشتر از شاخص های دیگر پراکندگی نشان مرکز کانی سازی شاخص های آلتراسیون های کلریتی و سریسیتی بیشتر از شاخص های دیگر پراکندگی نشان

نحوه تغییرات لیتولوژی از نمونه ۳۲ به ۳۹۹ در مسیر مقطع 'AA بهنحوی است که در ابتدای مقطع شیستها، در میانه مقطع تناوب واحدهای کرتاسه که کانیسازی در آنها رخ داده و در انتها واحدهای ولکانیکی مشاهده میشوند. بدین ترتیب در بخش مینرالیزه کانیهای آهندار گوتیت، هماتیت و کانیهای ثانویه کلریت که حاصل آلتراسیون و دگرسانی میباشند دیده میشود. بر اساس نتایج حاصل از مطالعات XRD،کانه ها عمدتاً کانههای سرب و روی بوده و از نظر مقدار، بخش اکسیده آنها بیشتر از بخش سولفوره است.

باطله	گانگ	کانەھا
کوارتز، میکا، دولومیت، کلسیت، کانی های رسی	باريت، مالاكيت	گالن، اسفالریت، همیمورفیت، سروزیت،
		اسمیت زونیت و

Sample NO.	×	Y	Geology Description	XRD	Alt.Index Anomaly	Ag	Au	Cd	Pb	ds	Zn	Fe(%)
SK-32	275870	3910360	Μ	Quartz+Calcite+Mica+Feldspar -Chlorite	ALK+ CHL +HAGO+HAMOT	3.17	4	53	1960	18.9	7610	5.17
SK-69	276070	3909660	M,CAR,FCGS	Calcite+Quartz+Dolomite+Feldspar	ALK+ALKDEP	0.05	7	0.2	5.2	0.4	10.2	1.31
SK-103	276120	3910410	CAR,FCGS	Calcite+Quartz+Dolomite+Clay Mineral	ALKDEP+ <i>CER</i>	0.95	2	16.8	334	4.5	428	2.51
SK-152	276270	3909760	M	Quartz+Dolomite+Feldspar+Calcite- Chlorite	ALK+ALKDEP+ CHL	0.03	2	0.2	10.7	0.5	49.2	2.68
SK-195	276370	3910460	CAR	Quartz+Calcite +Barite+Hemimorphite	CER	33,1	56	914	00681	111	38300	1.07
SK-210	276470	3909860	M,CAR,FCGS	Quartz+Calcite+Feldspar+ Cerussite +Mica+ Chlorite+Goethite	CHL +HAGO+HAMO+HAMOT	45.4	11	10	15700	97	856	5.7
SK-253	276670	3909960	CAR,FCGS	Calcite+Quartz	CER+SPDA	0.26	8	0.6	60.3	2.6	73	1.39
SK-298	276870	3910060	FCGS,FPB	Quartz+Calcite+Feldspar+Dolomite+Mica-Chlorite	ALK	0.09	0.75	0.2	16.3	0.4	23.6	2.37
SK-303	276870	3910560	FCGS,FPB	Feldspar+Quartz+Calcite+ Chlorite +Mica+ Hematite		0.11	0.75	0.075	7.2	0.5	50.8	3.28
SK-399	277270	3908760	FVB,MVB	Quartz+Calcite+Mica+ Chlorite		0.36	0.75	0.1	22.9	0.5	29.9	2.6

.S.
ě.
(:
þ.
Ş.
ŝ
¥
ۍ ۲
c C
ې لې
.}
Į۶.
<u>ې</u>
<u>C.</u>
Ś
يْ
ې: {:
Cr.
Ψ.
<u>v</u>
ç
3.
X
RI
<u> </u>
با
0
<u>،</u> ۲
L.
₽ . ·
⊳
ى
ē.
د» ۲
دول
ي.

٦

۵-۷- تلفیق مقاطع زمین شناسی و آنومالی های لیتوژئوشیمی

در شکل شماره ۵- ۷ بر روی مقطع زمینشناسی 'AA که در نقشه ۱۰۵/۰۰۰ زمینشناسی آورده شده، نتایج آنالیز سلولهای نمونهبرداری نیز نشان داده شده است. همانگونه که در شکل ملاحظه می شود بی شترین مقادیر مربوط به Cu ،Zn ،Pb و Cu ،Zn و Cu ،Zn و واحد زمین شناسی ^{Im} واقع شده است. در زیر این واحد یک چین خوردگی به شکل تاقدیس مشاهده شده و کنتاکت آن در سمت A گسلی و گسل آن از نوع معکوس و رورانده است. به احتمال زیاد کانی سازی و غنی شدگی بر اثر همین گسل خوردگی و شکستگیها بوده که مجرای مناسب برای عبور سیالات کانه دار را مهیا کرده است. هر سه قله مربوط به آنومالی Au در زونهای گسلی قرار گرفته اند. این مقطع در نیمه شمالی محدوده مورد مطالعه و از جنوب معادن سرب و روی عبور کرده است.

مقطع 'BB نیز از نیمه شمالی محدوده مورد مطالعه و از معادن سرب و روی گذر کرده است. مقادیر ماکزیمم Zn ،Pb و Zn در میانه مقطع و در اطراف معادن متروکه واقع شدهاند. واحد لیتولوژی موجود در این منطقه آهکهای کرتاسه است که شکستگی و روراندگیهای متعددی در سطح و در عمق آن ثبت شده است. منطقه آهکهای کرتاسه است که شکستگی و روراندگیهای متعددی در سطح و در عمق آن ثبت شده است. تغییرات عیار تا حدود زیادی رابطه مستقیم با شکستگیها و گسلهای منطقه نشان داده است. هر چه میزان شکستگی در واحدهای کرتاسه است. هر چه میزان منطقه آهکهای کرتاسه است مستقیم با شکستگیها و گسلهای منطقه نشان داده است. هر چه میزان شکستگی در واحدهای کرتاسه بیشتر شده، تمرکز عناصر Pn ،Pb و Au ییز اف زایش نشان داده است. هر چه میزان زیاستگی در واحدهای کرتاسه بیشتر شده، تمرکز عناصر Ph ،Pb و Ph نیز اف زایش نشان داده است. این زرباط بیشتر در گسلهای معکوس مشاهده می شود. در شکل شماره ۵- ۸ نحوه این تغییرات در مقطع زر زمین شناسی 'BB نشان داده شده است. هر سه قله مربوط به آنومالی طلا در زونهای گسلی قرار گرفتهاند.

فصل ششم حفريات

۶-۱- طراحی مقدماتی ترانشه

بر اساس اطلاعات و نتایج بهدست آمده از مطالعات لیتوژئوشیمیایی و زمینشناسی اقدام به طراحی شـبکه حفر ترانشه گردید. در این طراحی از لایههای اطلاعاتی زیر استفاده گردید:

۱- لایه اولویت بندی آنومالی های لیتو ژئو شیمایی بر اساس داده های خام
۲- لایه اولویت بندی آنومالی های لیتو ژئو شیمایی بر اساس داده های شاخص غنی شدگی
۳- لایه آنومالی لیتو ژئو شیمایی طلا بر اساس داده های خام
۴- لایه آنومالی لیتو ژئو شیمایی طلا بر اساس داده های شاخص غنی شدگی

در تعیین امتداد ترانشهها نیز نقشه زمینشناسی در مقیاس ۱:۵۰۰۰ استفاده شد. بدین ترتیب هر کجا که بیشترین همپوشانی از لایههای اطلاعاتی مذکور مشاهده گردید ترانشهای طراحی گردید.

شکل شماره ۶–۱ نحوه پراکندگی این ترانشهها را نشان میدهد. در جدول شماره ۶–۱ نیز مختصات ابتـدا و انتهای ترانشههای طراحی شده آورده شده است.

لازم به ذکر است مجموع طول ترانشههای طراحی شده ۲۱۷۶ متر بوده است. در شرح خدمات مقدار حفریات ۳۰۰ متر مکعب در نظر گرفته شده است که ملاحظه میشود اختلاف زیادی بین این دو عدد وجود دارد. در صحرا سعی بر حفر بهینه بوده است.

۶-۲- حفریات انجام شده

با در دست داشتن اطلاعات مربوط به حفریات طراحی شده در مطالعات دفتری، اکیپ کارشناسی نسبت به پیاده کردن ابتدا و انتهای ترانشهها با توجه به مشاهدات صحرایی اقدام نمود. در پارهای از مناطق حفر ترانشه در مختصات طراحی شده غیرممکن مینمود که با تصمیم کارشناسی، محل آنها تا حدودی جابجا شد و مناسبترین قسمت انتخاب و حفر گردید. در جدول شماره ۶-۲ مختصات و مشخصات ترانشههای حفر شده آورده شده است. در شکل شماره ۶-۲ نیز موقعیت آنها در محدوده نشان داده شده است.

· شکل شماره ۶-۱- طراحی مقدماتی مسیر حفر ترانشه بر اساس نتایج بدست آمده

نقاط ابتدا و انتهای مسیر حفر ترانشه ها	X	Y
Α	275820	3911010
В	276020	3910810
С	276118	3910908
D	276220	3911110
E	276361	3910969
F	276420	3910910
G	276468	3911075
Н	276220	3910700
I	276238	3910517
J	276423	3909426
К	276605	3909533
L	276730	3909606
Μ	276683	3909421
Ν	276820	3909510
0	276995	3909810
Р	277045	3909910
Q	277667	3909818
R	277733	3909648
S	277810	3909570
т	277811	3909678

جدول شماره ۶-۱- مختصات ابتدا و انتهای مسیر حفر ترانشه های طراحی شده

در این فصل از گزارش به تشریح لیتولوژی و مشخصات ترانـشههـای حفـر شـده، (۱۸ ترانـشه) آنـالیز نمونهها و محدودههای مینرالیزه پرداخته شده است.

در مجموع در حدود ۸۰ درصد از نمونههای برداشت شده، که مقدار طلا در آنها بیش از II, III و V در نیمه شمالی محدوده مورد مطالعه، واقع شدهاند. در ایـن بخـش از است در چهار ترانشه II, III و V در نیمه شمالی محدوده مورد مطالعه، واقع شـدهاند. در ایـن بخـش از محدوده، معادن و تونلهای استخراجی سرب و روی واقع شدهاند. این ترانشهها نیز در حاشیه و اطراف تونلهای استخراجی حفر شدهاند. علاوه بر طلا، مقدار آرسنیک نیز در این نمونهها به طور نسبی غنـیشـدگی نـشان داده استخراجی حفر شدهاند. علاوه بر طلا، مقدار آرسنیک نیز در این نمونهها به طور نسبی غنـیشـدگی نـشان داده استخراجی حفر شدهاند. علاوه بر طلا، مقدار آرسنیک نیز در این نمونهها به طور نسبی غنـیشـدگی نـشان داده است. به عبارت دقیقتر در مرکز کانیسازی سرب و روی و عناصر همراه آنها تشکیل شـده و بـه سـمت خـارج و اطراف، کانیسازی طلا و عناصر همراه آن مشاهده میشـود. عیـار کـانیسـازی طـلا در ایـن محـدوده حـداکثر اطراف، کانیسازی طلا و عناصر همراه آن مشاهده میشـود. عیـار کـانیسـازی طـلا در ایـن محـدوده حـداکثر اطراف، کانیسازی طلا و عناصر همراه آن مشاهده میشـود. عیـار کـانیسـازی طـلا در ایـن محـدوده حـداکثر اطراف، کانیسازی طلا در ایـن محـدوده حـداکثر اطراف، کانیسازی طرد و ست.

			سات	مختم				
رديف	شماره ترانشه	1.	ابتد	L	وتنا	طول	آزيموت	تعداد نمونه های درداشت شده
	كراكسه	X	Y	X	Y			بر داشت شناه
1	I	275894	3910936	275891	3910952	17.5	340	3
2	II	276012	3910877	276003	3910889	15.5	312	5+2
3	III	276065	3910839	276064	3910868	28.5	345	9+3
4	IV	276448	3911030	276487	3911032	11.4	53	3
5	V	276480	3911047	276470	3911052	10	110	3
6	VI	276462	3911048	276452	3911058	13	310	2
7	VII	276244	3911074	276257	3911067	14	110	1
8	IIX	276269	3911053	376276	3911054	7.5	128	1
9	IX	276277	3911050	276284	3911042	11	130	1
10	Х	277808	3909587	277824	3909598	23	55	2
11	XI	277772	3909593	277771	3909609	16	0	4+4
12	XII	277770	3909632	277770	3909625	6.5	0	1
13	XIII	277820	3909653	277819	3909672	18.1	345	3
14	XIV	276680	3909425	276682	3909434	6.6	10	1
15	XV	276679	3909433	276681	3909443	9.2	8	2
16	XVI	276657	3909460	276656	3909469	9	345	1
17	XVII	276649	3909481	276643	3909501	22.5	335	3
18	XIIX	276758	3909573	276754	3909580	8.5	310	2

جدول شماره ۶-۲ مختصات و مشخصات ترانشه های حفر شده

6-2-1- ترانشه شماره 1

ترانشه شماره ۱ بهطول ۱۷/۵ متر در موقعیت ۲۷۵۸۹۴ و ۲۳۹۱۰۹۳۶ و در امتداد N2OW حفر و تعداد ۳ نمونه از آن برداشت شده است. در نمونه های برداشت شده از این ترانشه عیار قابل قبولی از طلا بهدست نیامد. تنها در انتهای ترانشه غنی شدگی بسیار ضعیف مس مشاهده می شود. از نظر زمین شناسی این ترانشه در واحد سنگی E^{t1} مت شکل از توف کرم و سبز، حفر شده است. در شکل شماره ۶- ۳ مقطع زمین شناسی این ترانشه در می این ترانشه در مقیاس ۱۰۰۰ نشان داده شده است.

شکل شماره ۶-۲- مسیر ترانشه های حفر شده در منطقه مورد مطالعه

6-2-2- ترانشه شماره ۲

ترانشه شماره ۲ بهطول ۱۵/۵ متر در موقعیت ۲۲۶۰۱۲ و ۲۹۱۰۸۷۷ و در امتداد Y=۳۹۱۰۸۷۷ مخر و تعداد ۵ نمونه از آن برداشت شده است. در میان نمونه های برداشت شده، نمونه ST II بیشترین مقدار طلا (۱/۱۸ گرم بر تن) را در طول ۲ متر، نشان داده است. در نمونه 4–۲ Tr II نیز مقداری آغشتگی ثبت مقدار طلا (۱/۱۸ گرم بر تن) را در طول ۲ متر، نشان داده است. در نمونه 4–۱۲ نیز مقداری آغشتگی ثبت مقدار است. از نظر زمین شناسی این ترانشه در واحد سنگی E^{t1} متشکل از توف کرم و سبز رنگ، حفر گردیده است. برای اطمینان بیشتر، در محل طلادار اقدام به برداشت مجدد نمونه در فواصل یک متری گردید که هر دو نمونه جدید، عیاری بالاتر از ۱/۱ گرم در تن نشان داده.

Scree

Gypseferous

Brecclated zone

Calcite vein

Iron oxide & hydroxide vein

Lithic or sandy

Probably mineralized

Alteration zone

Gray to brown tuff

Gray to green tuff

Gray tuff

Porphyritic Gray Latite Andesite

Red to brown porphyitic andesite

Mar

Limston

Sandston

Conglomerate with quartz grain

Trl-3 Trl-2

Number and sample location

Fault

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

KAVESH KANSAR

Exploration of Gold in Sousanvar Area

Same

Scale=1:100

Engineering Co.

Date: Jan.2007 | Trench No. : N1

علاوه بر طلا آرسنیک نیز غنی شدگی نسبی نشان داده است. در مطالعات لیتوژئوشیمیایی همبستگی خوبی بین این دو عنصر در محدوده حفر ترانشه، دیده شده است. در نتیجه، آرسنیک میتواند ردیاب خوب طلا در این بخش از محدوده کانی ساز باشد. در عکس شماره ۶–۱ قسمت پرعیار ترانشه، که مقادیر بیش از ۱ گرم بر تن طلا داشته ند را نشان داده است. در شکل شماره ۶–۴ مقطع زمین شناسی این ترانشه در مقیاس ۱۰۱۰۰ نشان داده شده است.

عکس شماره ۶-۱- قسمت طلا دار ترانشه دوم در متراژ ۶/۵ الی ۸/۵ با بیش از ۱ گرم بر تن طلا

6-2-3- ترانشه شماره 3

ترانشه سوم به طول ۲۸/۵ متر در موقعیت ۲۷۶۰۶۵ و ۲۳۹۱۰۸۳۹ و Y=۳۹۱۰۸۳۹ و در امتداد N15W حفر و تعداد ۹ نمونه از آن برداشت شده است. در این ترانشه نیز یک نمونه (Tr III) به طول تقریبی ۳ متر، بیش از ۲/۲ گرم بر تن طلا داشته است. مقدار طلا در نمونههای Tr III و Tr III و Tr III نیز بیش از ۱۰۰ بوده است. در این متراژ علاوه بر طلا عناصر As، Cu، As و Sb نیز تا حدودی غنی شدهاند. از نظر زمین شناسی این ترانشه در واحد سنگی E^{t1} متشکل از توف کرم و سبز رنگ، حفر شده است. در مرحله دوم نمونه برداری از ترانشه، مجدداً از متراژ طلادار نمونههایی در فواصل یک متر برداشت شده که متراژ میانی آن حاوی بیشترین فصل ششم

بهصورت نمایی کاهش مییابد. در عکسهای شماره ۶–۲ و ۶–۳ بخش پرعیار ترانشه و رخنمون کانیسازی نشان داده شده است. در ضمن خاطر نشان میسازد که همچنان مقدار آرسنیک بهعنوان یک عنصر ردیاب طلا در این بخش از محدوده مطالعاتی بالا است. علاوه بر آن به مقدار جزئی مس از خود غنی شدگی نشان داده است. در شکل شماره ۶–۵ مقطع زمین شناسی این ترانشه در مقیاس ۱:۱۰۰ نشان داده شده است.

عکس شماره ۶-۲- قسمت پر عیار طلا در متراژ ۱۳/۷ الی ۱۶/۶ (با استناد به نمونه برداری مرحله اول ترانشهها)

عکس شماره ۶-۳- بخش اصلی تمرکز طلا در متراژ ۱۴/۷ الی ۱۵/۶(با استناد به نمونه برداری مرحله دوم)

No. II

LEGEND

Scree

Conglomerate with quartz grain Limston Marl Gray to green tuff Gray to brown tuff Alteration zone Probably mineralized Lithic or sandy Iron oxide & hydroxide vein Calcite vein Brecciated zone Gypseferous Porphyritic Gray Latite Andesite Gray tuff Sandston Red to brown porphyitic andesite

Fault Number and sample location

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

Exploration of Gold in Sousanvar Area

KAVESH KANSAR

Date: Jan.2007 Trench No. : N2

Engineering Co.

Scale=1:100

2.385 3.90.5 76 66 3.2 0.5 86 3.8 3.5 40.9 66 2.7 2.33.7 48 2.3 3.4 48 53 2.12.353 2.8 1.4

Zn

Scale ∐5(m)

6-2-4- ترانشه شماره 4

ترانشه شماره ۴ بهطول ۱۱/۴ متر در موقعیت X=۲۷۶۴۴۸ و ۲۹۱۱۰۳۰ و درامتداد N53E حفر و تعداد ۳ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی Ku^{ml2} مت شکل از مارن، شیل آهکی و سنگ آهک فسیل دار، حفر گردیده است. در این ترانشه دو نمونه اول در متراژه ای صفر تا ۸/۵ متر حاوی بیش از ۱۶۰ ppb طلا بودهاند. مقدار سرب و روی در این متراژ در حد ۱ تا ۴ درصد میباشد. آنتیموان و نقره نیز در این فاصله غنی شده است. در شکل شماره ۶-۶ مقطع زمین شناسی این ترانسه در مقیاس ۱:۱۰۰ نشان داده شده است.

۶-۲-۶- ترانشه شماره ۵

ترانشه شماره ۵ بهطول ۱۰ متر در موقعیت X=۲۷۶۴۸۰ و Y=۳۹۱۱۰۴۷ و در امتداد S70E حفر و تعداد ۳ نمونه از آن برداشت شده است. از نظر زمینشناسی این ترانشه در واحدهای سنگی Ku^{ml2} و Ku^{sc} م متشکل از آهک و کنگلومرا، حفر گردیده است. عیار طلا در طول این ۱۰ متر، بیش از ۱۷۰ppb بوده است و در انتهای آن بیشترین غنیشدگی در حد ۴۱۰ ppb مشاهده شده است. سرب و روی و آرسنیک در این ترانشه غنی شدهاند. در انتهای ترانشه علاوه بر عناصر یاد شده، مولیبدن نیز بهطور جزئی غنی شده است. در شکل شماره ۶-۷ مقطع زمینشناسی این ترانشه در مقیاس ۱۰:۱۰ نشان داده شده است.

6-2-9- ترانشه شماره 6

ترانشه شماره ۶ بهطول ۱۳ متر در موقعیت ۲۷۶۴۶۲ و ۲۹۱۱۰۴۸ و Y=۳۹۱۱۰۴۸ و Ku^{sc} و در امتداد N50W حفر و تعداد ۲ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحدهای سنگی Ku^{sl2} و Ku^{sl2} و تعداد ۲ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحدهای سنگی Ku^{sl2} و متککل از سنگآهک و کنگلومرا، حفر گردیده است. در طول این ۱۳ متر، عیار طلا بیش از 9 97 بوده است و در ابتدای آن بیشترین غنی شدگی در حد ۱۸۰ ppb می باشد. سرب و روی نیز در این ترانشه به طور نسبی غنی شدهاند. در ابتدای آن بیشترین غنی شدگی در حد موال این ۲۰ می باشد. سرب و روی نیز در این ترانشه به مطور نسبی غنی شدهاند. در ابتدای آن بیشترین غنی شده این ۱۸۰ می باشد. سرب و روی نیز در این ترانشه به طور نسبی زمین شدهاند. در ابتدای ترانشه علاوه بر عناصر یاد شده نقره نیز غنی شده است. در شکل شماره ۶۰ مقطع زمین شناسی این ترانشه در مقیاس ۱۰۰۰ نشان داده شده است.

gS Pb Zn Sn 1.1% 2.6% 12 <u>2.</u>3 4.0% 3.5% 108 2.4 1140 580 2.7 7.9

пο

__5 (m)

Scale

GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

MINISTRY OF INDUSTRIES AND MINES

Number and sample location

Fault

Scree Gypseferous LEGEND

,...-

Calcite vein Brecciated zone

Iron oxide & hydroxide vein

Lithic or sandy

Probably mineralized

Alteration zone

Gray to brown tuff

Gray to green tuff

Gray tuff

Red to brown porphyitic andesite

Porphyritic Gray Latite Andesite

Marl Limestone

Sandstone

Conglomerate with quartz grain

 \leq

No. V

LEGEND

Scree Fault Number and sample location Conglomerate with quartz grain Limston Marl Gray to green tuff Gray to brown tuff Probably mineralized Lithic or sandy Brecciated zone Gypseferous Gray tuff Alteration zone Iron oxide & hydroxide vein Calcite vein Sandston Red to brown porphyitic andesite Porphyritic Gray Latite Andesite

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

Exploration of Gold in Sousanvar Area

KAVESH KANSAR

Engineering Co.

Scale=1:100

Value in ppm except %

Date: Jan.2007 Trench No. : N5

RUNNIN

 \leq

LEGEND

Gypseferous Scree

Brecclated zone

Calcite vein

Iron oxide & hydroxide vein

Lithic or sandy

Probably mineralized

Alteration zone

Gray to brown tuff

Gray to green tuff

Gray tuff

Porphyritic Gray Latite Andesite

Red to brown porphyitic andesite

Mar

Limston

Sandston

Conglomerate with quartz grain

Fault

Number and sample location

GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

MINISTRY OF INDUSTRIES AND MINES

Exploration of Gold in Sousanvar Area

KAVESH KANSAR

Date: Jan.2007 Trench No. : N6

Engineering Co.

Scale=1:100

Same and a second second

ترانشه شماره ۷ بهطول ۱۴ متر در موقعیت X=۲۷۶۲۴۴ و Y=۳۹۱۱۰۷۴ و در امتداد S70E حفر و تعداد ۱ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی Ku^{sc} متسکل از ماسه سنگ، حفر گردیده است. رگه و رگچه های تقریباً زیادی از جنس اکسید و هیدروکسید آهن در این واحد ماسه سنگی مشاهده می شود که بیشتر در متراژ ۷ الی ۱۲ متری بوده است. به مقدار جزئی غنی شدگی طلا به میزان ۹۴ ppb در تک نمونه برداشت شده از این ترانشه دیده می شود که به احتمال زیاد در ارتباط با رگچه های مذکور است. در شکل شماره ۶- ۹ مقطع زمین شناسی این ترانشه در مقیاس ۱۰:۱۰ نشان داده شده است.

۶-۲-۶ ترانشه شماره ۸

ترانشه شماره ۸ بهطول ۷/۵ متر در موقعیت ۲۷۶۲۶۹ و ۳۹۱۱۰۵۳ و در امتداد S62E حفر و تعداد ۱ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی Ku^{sc} مت شکل از کنگلومرا، حفر گردیده است. رگه و رگچههایی از جنس اکسید و هیدروکسید آهن در این واحد کنگلومرایی مشاهده می شود که بیشتر در متراژ ۲ الی ۵ متری بوده است. به مقدار جزئی غنی شدگی طلا به میزان ۴۰ ppb در تک نمونه برداشت شده از این ترانشه دیده می شود که به احتمال زیاد در ارتباط با رگچههای مذکور است. در شکل شماره ۶- ۱۰ مقطع زمین شناسی این ترانشه در مقیاس ۱:۱۰۰ نشان داده شده است.

9-2-9- ترانشه شماره 9

ترانشه شماره ۹ بهطول ۱۱ متر در موقعیت ۲۷۶۲۷۷ و ۲۹۹۱۱۰۵۰ و در امتداد S50E حفر و تعداد ۱ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی Ku^{sc} متشکل از کنگلومرا، حفر گردیده است. بهمقدار جزئی غنی شدگی طلا به میزان ۵۴ ppb در تک نمونه برداشت شده از این ترانشه دیده می شود. در شکل شماره ۶– ۱۱ مقطع زمین شناسی این ترانشه در مقیاس ۱:۱۰۰ نسان داده شده است.

Start Point

276244 \times

~

End Point

276257

Scale

Figure 6-9: Geological section of wall and bottom of trench No.

 \leq

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														×_×_×.		
Conglomerate with quartz grain	Sandstone	Limestone	Marl	Red to brown porphyitic andesite	Porphyritic Gray Latite Andesite	Gray tuff	Gray to green tuff	Gray to brown tuff	Alteration zone	Probably mineralized	Lithic or sandy	Iron oxide & hydroxide vein	Calcite vein	Brecclated zone	Gypseferous	Scree

Number and sample location

Fault

Date: Jan.2007 Trench No. : N7

Scale=1:100

Engineering Co.

Exploration of Gold in Sousanvar Area

KAVESH KANSAR

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

Figure 6-10: Geological section of wall and bottom of trench No.

 \leq

LEGEND

Conglomerate with quartz grain	Limston	Marl	Red to brown porphyitic andesite	Porphyritic Gray Latite Andesite	Gray tuff	Gray to green tuff	Gray to brown tuff	Alteration zone	Probably mineralized	Lithic or sandy	Iron oxide & hydroxide vein	Calcite vein	Brecciated zone	Gypseferous	Scree
		Limston	Marl Limston	Red to brown porphyitic andesite Marl Limston	Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Porphyritic Gray Latite Andesite Marl Marl	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gypseferous Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston

Fault

Number and sample location

Engineering Co. Date: Jan.2007 Trench No. : N8

Scale=1:100

Subscription Revealed

Exploration of Gold in Sousanvar Area

KAVESH KANSAR

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL

EXPLORATION OF IRAN

2n	- Sn	Sb	Pb	Mo	Cu	Bi	Au(ppb)	As	Ag	
88	2.9	1.2	44	2.2	20	0.2	54	36.7	0.2	TrlX-1

Scale

___5(m)

LEGEND

Gray to green tuff	Gray to brown tuff	Alteration zone	Probably mineralized	Lithic or sandy	Iron oxide & hydroxide vein	Calcite vein	Brecciated zone
Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyltic andesite Marl Limston Sandston	Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston Sandston	Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston Sandston	Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Red to brown porphyitic andesite Marl Limston Sandston	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston Sandston	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Porphyritic Gray Latite Andesite Red to brown porphyltic andesite Marl Limston Sandston	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Porphyritic Gray Latite Andesite Red to brown porphytic andesite Marl Limston Sandston	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Porphyritic Gray Latite Andesite Marl Limston Sandston
Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphytiic andesite Marl Limston	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Porphyritic Gray Latite Andesite Red to brown porphytic andesite Marl Limston	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston
Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl	Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl	Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl	Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphytic andesite Marl	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphytic andesite Marl	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl
Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyltic andesite	Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyltic andesite	Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite	Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyltic andesite	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyltic andesite	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyltic andesite	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphytic andesite
Gray tuff Porphyritic Gray Latite Andesite	Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite	Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite	Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite
Gray tuff	Gray to green tuff Gray tuff	Gray to brown tuff Gray to green tuff Gray tuff	Alteration zone Gray to brown tuff Gray to green tuff Gray tuff	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff
	Gray to green tuff	Gray to brown tuff Gray to green tuff	Alteration zone Gray to brown tuff Gray to green tuff	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff
Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff	Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone	Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized	Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy	Brecciated zone Calcite vein Iron oxide & hydroxide vein	Brecciated zone Calcite vein	Brecciated zone	
Gypseferous Brecciated zone Calcite vein Iron oxide & hydroxide vein Iron oxide & hydroxide vein Ithic or sandy Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff	Gypseferous Brecciated zone Calcite vein Iron oxide & hydroxide vein Iron sandy Lithic or sandy Probably mineralized Alteration zone	Gypseferous Brecciated zone Calcite vein Iron oxide & hydroxide vein Irthic or sandy Lithic or sandy Probably mineralized	Gypseferous Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy	Gypseferous Brecciated zone Calcite vein Iron oxide & hydroxide vein	Gypseferous Brecciated zone Calcite vein	Gypseferous Brecclated zone	Gypseferous

Number and sample location

Fault

KAVESH KANSAR Engineering Co.

Exploration of Gold in Sousanvar Area

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

A Contraction of the second se

Scale=1:100

Date: Jan.2007 Trench No. : N9

ترانشه شماره ۱۰ بهطول ۲۳ متر در موقعیت ۲۷۷۸۰۸ پرداشت شده است. از نظر زمین شناسی این دیوارهای به افراز ۸ متر بالاتر از سطح حفر و تعداد ۲ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی ^E متشکل از گدازه های پورفیری از جنس آندزیت تا تراکی آندزیت، حفر گردیده است. رگچه های فراوان کلسیتی بصورت متقاطع در این سنگ ها تشکیل شده است. یکی از دو نمونه برداشت شده از بخش آندزیتی و دیگری از رگچه های کلسیتی بوده است که در هیچیک غنی شدگی خاصی وجود ندارد. شکل شماره ۶–۱۲ مقطع زمین شناسی این ترانشه را در مقیاس ۱۰۱۰۰ نشان می دهد. در عکس شماره ۶–۴ فرسایش پوست پیازی در گدازه های آندزیتی مشاهده می شود که توسط رگچه های کلسیتی قطع شده اند. در عکس

عکس شماره ۶-۴- فرسایش پوست پیازی در گدازه های آندزیتی

عکس شماره ۶-۵- نمایی از رگه و رگچه های کلسیتی عقیم در بخش شرقی محدوده مورد مطالعه

LEGEND

Scree

Gypseferous

Brecclated zone

Calcite vein

Iron oxide & hydroxide vein

Lithic or sandy

Probably mineralized

Alteration zone

Gray to brown tuff

Gray to green tuff

Gray tuff

Porphyritic Gray Latite Andesite

Red to brown porphyitic andesite

Marl

Limston

Sandston

Conglomerate with quartz grain

Number and sample location

Fault

Trl-3 Trl-2

Date: Jan.2007 Trench No. :N10

KAVESH KANSAR

KANFERN KAN

RANNAN I

Scale=1:100

Exploration of Gold in Sousanvar Area

MINISTRY OF INDUSTRIES AND MINES

GEOLOGICAL SURVEY & MINERAL

EXPLORATION OF IRAN

Engineering Co.

6-2-11- ترانشه شماره ۱۱

ترانشه شماره ۱۱ بهطول ۱۶ متر در موقعیت ۲۷۷۷۷۲ و ۳۹۰۹۵۹۳ و در امتداد N-S و ۲ امتداد Y=۳۹۰۹۵۹ و در امتداد S مترک از گدازههای تعداد ۴ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی E^a متشکل از گدازههای آندزیت تا تراکی آندزیت پورفیری، حفر گردیده است. دو نمونه ابتدایی ترانشه غنی شدگی بیش از N۰ ppb اندزیت تا تراکی آندزیت پورفیری، حفر گردیده است. دو نمونه ابتدایی ترانشه غنی شدگی بیش از N۰ ppb آندزیت تا تراکی آندزیت پورفیری، حفر گردیده است. دو نمونه ابتدایی ترانشه غنی شدگی بیش از N۰ ppb اندزیت تا تراکی آندزیت پورفیری، حفر گردیده است. دو نمونه ابتدایی ترانشه غنی شدگی بیش از N۰ ppb نشان داده اند. در مرحله دوم، در فواصل یک متری از بخش نسبتاً غنی شده نمونه برداری مجدد انجام پذیرفت که بر اساس نتایج حاصله عیار طلا در نمونه مربوط به متراژ ۵ الی ۶ متری بیش از ۶۰۰ معی باشد. مقدار مس نیز در این بخش، بیش از ۵۰ برابر زمینه بوده است. در شکل شماره ۶–۱۳ مقطع زمین شناسی این ترانشه در معان داده شده است. در مقیاس ۱۱۰۰ نشان داده شده است. در عکس شماره ۶-۶ بخش غنی شده طلا در ترانشه ۱۱۰ نشان داده شده است. در مقرام ۱۵ متری جنس غنی شده طلا در ترانشه ۱۰۰ نسان داده شده است.

عکس شماره ۶-۶- نمایی از بخش نسبتاً غنی شده طلا در متراژ ۵ تا ۶ ترانشه شماره ۱۱

Scree

Gypseferous

Brecciated zone

Calcite vein

Iron oxide & hydroxide vein

Lithic or sandy

Probably mineralized

Alteration zone

Gray to brown tuff

Gray to green tuff

Gray tuff

Porphyritic Gray Latite Andesite

Red to brown porphyitic andesite

Marl

Limston

Sandston

Conglomerate with quartz grain

Fault

Number and sample location

Trl-3 Trl-2

Exploration of Gold in Sousanvar Area KAVESH KANSAR Scale=1:100 Date: Jan.2007 Trench No. :N11 Engineering Co.

MINISTRY OF INDUSTRIES AND MINES

GEOLOGICAL SURVEY & MINERAL

EXPLORATION OF IRAN

۶-۲-۲۱ ترانشه ۱۲

ترانشه شماره ۱۲ بهطول ۶/۵ متر در موقعیت ۲۷۷۷۷۰ و ۲۳۹۰۹۶۳۲ و در امتداد N-S حضر و تعداد ۱ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی E^a متشکل از گدازههای آندزیت تا تراکی آندزیت پورفیری، حفر گردیده است. نمونه برداشت شده به مقدار جزئی نسبت به طلا غنی شدگی نشان داده است. در شکل شماره ۶–۱۴ مقطع زمین شناسی این ترانشه در مقیاس ۱:۱۰۰ نشان داده شده است.

۶-۲-۳۱- ترانشه ۱۳

ترانشه شماره ۱۳ بهطول ۶/۵ متر در موقعیت ۲۷۷۸۲۰ و ۳۹۰۹۶۵۳ و در امتداد N15W حفر و تعداد ۳ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی E^a متشکل از گدازههای آندزیت تا تراکی آندزیت پورفیری، حفر گردیده است. در بخش انتهایی ترانشه رگچههای فراوان کلسیتی بصورت متقاطع در این سنگها تشکیل شده است. در بخش انتهایی ترانشه غنی شدگی ضعیفی از طلا مشاهده شده است. در شکا این ترانشه در مقیاس ۱۱۰۰۰ نشان داده شده است. مشاهده شده است. در بخش انتهایی ترانشه رگچههای فراوان معاوری معاورت متقاطع در این سنگها تشکیل شده است. در بخش انتهایی ترانشه منی شدگی از طلا مشاهده شده است. در مقیاس ۱۱۰۰۰ نشان داده شده است. در بخش انتهایی ترانشه منی معیفی از میلا

8-2-21- ترانشه ۱۴

ترانشه شماره ۱۴ بهطول ۶/۶ متر در موقعیت ۲۷۶۶۸۰ و ۲۹۰۹۴۲۵ و در امتداد N10E حفر و تعداد ۱ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی E^{t1} متـشکل از تـوف آندزیتی عمدتاً کرم رنگ، حفر گردیده است. در تنها نمونه برداشت شده نیز غنیشدگی خاصی مـشاهده نـشده است. در شکل شماره ۶–۱۶ مقطع زمینشناسی این ترانشه در مقیاس ۱:۱۰۰ نشان داده شده است.

	-	
End Point	Start Point	
277770	277770	Х
3909625	3909632	Y
•		

Zn	Sn	Sb	Pb	Mo	Cu	Bi	Au(ppb)	As	Ag	
84	2	1.7	29	1.3	29	0.2	50	23.4	9.0	TrXII-1

lo. XII

Gray tuff Gray to green tuff Gray to brown tuff Gypseferous Scree Lithic or sandy Iron oxide & hydroxide vein Brecciated zone Conglomerate with quartz grain Limston Marl Red to brown porphyitic andesite Porphyritic Gray Latite Andesite Alteration zone Probably mineralized Calcite vein Sandston

Number and sample location

Fault

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

Exploration of Gold in Sousanvar Area

KAVESH KANSAR Engineering Co.

алананан Камрели Камрели Камрели Камрели

Date: Jan.2007 Trench No. :N12

Scale=1:100

LEGEND

Gypseferous

Scree

Brecciated zone Calcite vein Iron oxide & hydroxide vein
Probably mineralized
Alteration zone

Gray to green tuff Gray to brown tuff

Gray tuff

Porphyritic Gray Latite Andesite

Red to brown porphyitic andesite

Mar

Limston

Sandston

Conglomerate with quartz grain

Trl-3 Trl-2

Number and sample location

Fault

Engineering Co.

Scale=1:100

Same

Exploration of Gold in Sousanvar Area

KAVESH KANSAR

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

Date: Jan.2007 Trench No. :N13

×

 \prec

Zn	Sn	Sb	Pb	Mo	Cu	Bi	Au(ppb)	As	Ag	
48	2.2	0.5	14	1.4	5.4	0.2	3.5	8.1	0.1	TrXIV-1

Figure 6-16: Geological section of wall and bottom of trench No.

N X X

LEGEND

Scree

7272

. حرا

Limston Porphyritic Gray Latite Andesite Gypseferous Marl Red to brown porphyitic andesite Gray tuff Gray to green tuff Gray to brown tuff Alteration zone Probably mineralized Lithic or sandy Iron oxide & hydroxide vein Calcite vein Brecciated zone Conglomerate with quartz grain Sandston

Number and sample location

Fault

6-2-21- ترانشه 1۵

ترانشه شماره ۱۵ بهطول ۹/۲ متر در موقعیت ۲۷۶۶۷۹ و ۳۹۰۹۴۳۳ و در امتداد N8E حفر و تعداد ۲ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی E¹¹ متشکل از تناوبی از توف آندزیتی کرم رنگ و توف سبز، حفر گردیده است. در نمونه های برداشت شده نیز غنی شدگی خاصی دیده نمی شود. در شکل شماره ۶–۱۷ مقطع زمین شناسی این ترانشه در مقیاس ۱:۱۰۰ نشان داده شده است.

6-2-2- ترانشه ۱۶

ترانشه شماره ۱۶ بهطول ۹ متر در موقعیت ۲۷۶۶۵۷ و ۲۹۰۹۴۶۰ و در امتداد N15W حفر و تعداد ۱ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی E^{t1} مت شکل از توف آندزیتی عمدتاً کرم رنگ، حفر گردیده است. در تنها نمونه برداشت شده نیز غنی شدگی خاصی مشاهده نشده است. در شکل شماره ۶–۱۸ مقطع زمین شناسی این ترانشه در مقیاس ۱:۱۰۰ نشان داده شده است.

۶-۲-۱۷ ترانشه ۱۷

ترانشه شماره ۱۷ بهطول ۲۲/۵ متر در موقعیت ۲۷۶۶۴۹ و X=۲۷۶۶۴۹ و در امتداد N25W حفر و تعداد ۳ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد E^{t1} متشکل از تناوبی از توف آندزیتی کرم رنگ و لاتیت آندزیت حفر گردیده است. غنی شدگی خفیف طلا در نمونه بخش میانی ترانشه مشاهده شده است. در شکل شماره ۶-۱۹ مقطع زمین شناسی این ترانشه در مقیاس ۱:۱۰۰ آورده شده است.

۶-۲-۱۸- ترانشه ۱۸

N50W ترانشه شماره ۱۸ به طول ۸/۵ متر در موقعیت X=۲۷۶۷۵۸ و ۲۹۰۹۵۷۳ و در امتداد N50W حفر و تعداد ۲ نمونه از آن برداشت شده است. از نظر زمین شناسی این ترانشه در واحد سنگی E^{t1} متشکل از توف آندزیتی عمدتاً کرم رنگ، حفر گردیده است. در نمونه های برداشت شده نیز غنی شدگی خاصی مشاهده نشده است. در شکل شماره ۶-۲۰ مقطع زمین شناسی این ترانشه در مقیاس ۱:۱۰۰ نشان داده شده است.

End Point	Start Point	
276681	276679	Х
3909443	3909433	Y

Zn	Sn	Sb	Pb	Mo	Cu	<u>B</u>	Au(ppb)	As	Ag	
54	3.1	0.5	17	1 <u>.</u> 4	240	0.2	2.2	3.2	0.2	TrXV-1
42	2.7	2.5	14.5	1.6	10.9	0.2	8.8	94.2	0.1	TrXV-2

Figure 6-17: Geological section of wall and bottom of trench No. XV

LEGEND

Gray tuff Limston Marl Porphyritic Gray Latite Andesite Gray to green tuff Gray to brown tuff Lithic or sandy Scree Alteration zone Probably mineralized Calcite vein Brecciated zone Gypseferous Conglomerate with quartz grain Red to brown porphyitic andesite Iron oxide & hydroxide vein Sandston

Fault

Number and sample location

Date: Jan.2007 Trench No. :N15 Engineering Co.

Scale=1:100

A CONTRACT OF CONTRACT

Exploration of Gold in Sousanvar Area

KAVESH KANSAR

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

Conglomerate with quartz grain	Limston	Marl	Red to brown porphyitic andesite	Porphyritic Gray Latite Andesite	Gray tuff	Gray to green tuff	Gray to brown tuff	Alteration zone	Probably mineralized	Lithic or sandy	Iron oxide & hydroxide vein	Calcite vein	Brecciated zone	Gypseferous	Scree	
		Limston	Marl Limston	Red to brown porphyitic andesite Marl Limston	Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to green tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphyitic andesite Marl Limston	Gypseferous Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphytic andesite Marl Limston	Scree Gypseferous Brecciated zone Calcite vein Iron oxide & hydroxide vein Lithic or sandy Probably mineralized Alteration zone Gray to brown tuff Gray to brown tuff Gray to green tuff Gray tuff Porphyritic Gray Latite Andesite Red to brown porphytic andesite Marl Limston

Number and sample location

Fault

MINISTRY OF INDUSTRIES AND MINES

GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

Engineering Co.

Date: Jan.2007 Trench No. :N16

KAVESH KANSAR

Exploration of Gold in Sousanvar Area

X	
\leq	

LEGEND

Scree
Gypseferous
Brecciated zone
Calcite vein
Iron oxide & hydroxide vein
Lithic or sandy
Probably mineralized
Alteration zone
Gray to brown tuff
Gray to green tuff
Gray tuff
Porphyritic Gray Latite Andesite
Red to brown porphyitic andesite
Marl
Limston
Sandston
Conglomerate with quartz grain

Fault

Number and sample location

Exploration of Gold in Sousanvar Area MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

C

KAVESH KANSAR Engineering Co.

Supervision Revealed International Provide Automatical Provide Aut

Scale=1:100 Date: Jan.2007 Trench No. :N17

Zn	Sn	Sb	Pb	Mo	Cu	<u>B</u> i	Au(ppb)	As	Ag	
44	3.3	1.2	10	1.9	4.2	0.2	3.4	3.8	0.1	rXIIX-1
82	2.4	0.5	15	2.3	5.6	0.2	7.6	20.3	0.1	TrXIIX-2

-

LEGEND
Scree
Gypseferous
Brecciated zone
Barite Vein
Calcite vein
Iron oxide & hydroxide vein
Lithic or sandy
Probably mineralized
Alteration zone
Gray to brown tuff
Gray to green tuff
Gray tuff
Porphyritic Gray Latite Andesite
Red to brown porphyitic andesite
Marl
Limston
Sandston
Conglomerate with quartz grain
- - -

Fault

Number and sample location

Exploration of Gold in Sousanvar Area

MINISTRY OF INDUSTRIES AND MINES GEOLOGICAL SURVEY & MINERAL EXPLORATION OF IRAN

)

KAVESH KANSAR Engineering Co.

Scale=1:100 Date: Jan.2007 Trench No. :N18

فصل هفتم نتیجه گیری و پیشنهادات

فصل هفتم

۷-۱-۷ نتیجه گیری

با توجه به کلیه اطلاعات بدست آمده از مطالعات صحرایی، دفتری و آزمایشگاهی در منطقهای به وسعت ۵ کیلومتر مربع در شمال روستای سوسنوار و به مرکزیت سنجو نتایج زیر حاصل شده است:

- ۱- در شمال محدوده مورد مطالعه یک سری دهانهها، چاهها و تونلهای استخراجی مشاهده میشود (منطقه اولویت اول) که معدنکاری سرب و روی در آن اتفاق افتاده است. سنجو روستای مخروبهای است که در گذشته محل اسکان کارگران و مهندسان معدن بوده است.
- ۲- سنگ میزبان این کانیسازی، سنگآهکهای کرتاسه است. بیشترین عیار سرب و روی در سنگهای معدنی برداشت شده از منطقه برابر %Zn=4 و %Pb=10.2 بهدست آمده است. این نمونهها بصورت کانالی از داخل ترانشهها برداشت شدهاند.
- ۳- در بعضی از نمونه های متعلق به معادن متروکه، طلا از خود غنی شدگی نشان داده است. بیشترین مقدار طلا
 در این نمونه ها Au=2 ppm بوده است.
- ۴- بهنظر می رسد که بخش عمده طلای منطقه به صورت محلول جامد در کانی های سرب و روی حضور داشته و بخش دیگر به صورت بسیار دانه ریز باشد.
- ۶- با توجه به نمونههای برداشت شده از ترانشهها و آنالیز آنها، بیشترین مقادیر طلا در ترانشههایی که در پیرامون بخش اصلی معدن حفر شدهاند، ثبت شده است. بطوری که اگر کانی سازی سرب و روی در مرکز محدوده در نظر گرفته شود محدودههای غنی شده از طلا در بخش بیرونی واقع شدهاند. این بخش حاشیهای بر روی کنتاکت سنگهای کرتاسه با واحدهای ائوسن منطبق بوده و کانی سازی در هر دو واحد سنگی یاد شده صورت گرفته است.

- ۷- توفهای کرمرنگ متعلق به ائوسن که آثار اکسید و هیدرواکسید آهن در آنها کاملاً مشهود است، بخش اصلی کانی سازی طلا را در بر دارند. در این سنگها کانیسازی سرب و روی مشاهده نمیشود و عیار طلا در داخل ترانشه حفر شده در این بخش تا Au=2.25 ppm اندازه گیری شده است. ارتباط کاملی بین سنگهای رنگآمیزی شده توسط اکسیدهای آهن و طلا مشاهده می شود. مهمترین ردیاب طلا در این محدوده ارسنیک بوده و در بیش از ۸۰ درصد موارد همپوشانی کاملی بین این دو عنصر مشاهده شده است.بخش دوم کانی سازی طلا در واحد ماسه سنگی و بعضاً کنگلومرایی کرتاسه که حاوی رگچه های اکسید و هیدروکسید آهن هستند، تشکیل شده است. در این رگچه های اکسیدی بیشترین عیار طلا در محدوده مورد مطالعه (Au=6.7 ppm)، اندازه گیری شده است، ولی از نظر وسعت، گسترش زیادی ندارد. در این بخش نیز غنی شدگی سرب و روی مشاهده نمی گردد.
- ۸- در زون کانهساز، شاخص آلتراسیون هاشی گوشی که معرف افزوده شدن اکسید آهن به صورت Fe₂O₃ به محیط می باشد، ارتباط و همبستگی خوبی را با آنومالی های طلا نشان داده است. سرب و روی با هیچ یک از شاخص های آلتراسیونی همبستگی نشان نداده و به عبارت دیگر کانی سازی سرب و روی در هسته انجام شده و آلتراسیون ها به صورت حلقه در اطراف آن واقع شده اند.
- ۹- ارتباط تنگاتنگی بین کانیسازی و زونهای شکستگی و گسله وجود دارد. این شکستگیها عمدتاً در ارتباط با گسیختگیهای حاصل از گسلهای معکوس میباشند.
- ۱۰- در قسمتهای دیگر منطقه مقادیر قابل قبولی از طلا اندازه گیری نشده است. تنها در منتهیالیه شرقی محدوده نمونهبرداری (اولویت دوم) و در محل آثار کانیسازی مس بعضاً غنی شدگی های ضعیفی در حد ماکزیمم Au=600 ppb اندازه گیری شده است.
- ۱۱- در جنوب محدوده نمونهبرداری کانیسازی خاصی مشاهده نمیشود. تنها در جوار روستای سوسنوار رگه و رگچههایی از باریت در ضخامتهای متفاوت مشاهده میشود که به جز باریت غنیشدگی قابل توجهی از عناصر دیگر مشاهده نمیشود.

۱۱- در نهایت سه محدوده غنی شده A، B و C اولویتبندی شد که در محدودههای A و B طلا در حد قابل
قبول، آنومال بوده است. محدوده A بهوسعت ۷۰ هکتار، در شمال محدوده مورد مطالعه و در اطراف معـادن
متروکه سرب و روی واقع شده و محدوده B بهوسعت ۲۵ هکتار در منتهیالیه شـرق محـدوده قـرار گرفتـه
است. در محدوده C آنومالی طلا ثبت نشده است و به همین دلیل در اولویت آخر ردهبندی شـده اسـت. در
این محدوده آنومالیهای سرب و روی مشاهده میگردد.

۲-۷- پیشنهادات

A در انتهای پروژه و بر اساس نتایج حاصله، ادامه انجام مطالعات اکتشافی تفصیلی در محدوده کانیسازی A توسط این مهندسین مشاور به ترتیب زیر پیشنهاد می گردد. محدوده A در اصل یک کانیسازی پلیمتال رگهای و افشان بوده و بدنه اصلی کانیسازی آن را سرب و روی تشکیل داده است. بههمراه آن طلا نیز در برخی مناطق پتانسیل لازم، جهت بارور شدن را داراست. بعضاً غنی شد گیهای طلا در حاشیه و کنتاکت با سنگهای ائوسن نیز مشاهده شده است.

۱- تهیه نقشه توپوگرافی در مقیاس ۱۰۱٬۰۰ و به وسعت ۷۰ هکتار طبق نقشه پیوست
۲- تهیه نقشه زمین شناسی در مقیاس ۱۰۰٬۰۰ و به وسعت ۷۰ هکتار در همان محدوده
۳- انجام مطالعات ژئوفیزیکی به روش IP و RS و تفسیر آن به تعداد ۳۰۰۰ نقطه
۴- تکمیل حفریات سطحی به حجم ۱۰۰۰ مترمکعب
۵- برداشت نمونه از ترانشهها و آنالیز ۵۰۰ نمونه برای عناصر Au,Ag,Pb,Zn,Cd,Cu,Sb,As
۵- برداشت نمونه از ترانشهها و آنالیز ۵۰۰ نمونه برای عناصر ۶۰۰ این و نمونه برداری از آنها (۷۰ نمونه)
۶- پاکسازی دهانههای استخراجی معادن سرب و روی (حتیالامکان) و نمونه برداری از آنها (۷۰ نمونه)
۸- طراحی و حفر گهانه به میزان حداقل ۱۰۰۰ متر
۹- بررسی لاگ گمانهها و نمونهبرداری از آنها (۵۰۰ نمونه)
۱۰- نتیجهگیری و معرفی مدل سهبعدی کانیسازی و تعیین محدوده عمقی کانسار
۱۰- انجام مطالعات فنی و اقتصادی مقدماتی
۱۰- انجام مطالعات فنی و اقتصادی مداری و تعیین محدوده عمقی کانسار

زون کانیسازی B نیز اجرا نمود.

منابع:

 پرند سیمین، ۱۳۷۵، روشهای اکتشاف ژئوشیمیایی ذخایر معدنی، سازمان زمین شناسی کشور
'- توسعه علوم زمین، ۱۳۸۱، مطالعات اکتشافی تفصیلی طلا در منطقه گندی
·- حسنی پاک علی اصغر، ۱۳۷۴، بهینه سازی پروژه های اکتشافی، انتشارات دانشگاه یزد
·- حسنی پاک علی اصغر، ۱۳۷۸، اکتشاف ذخایر طلا، انتشارات دانشگاه تهران
،- حسنی پاک علی اصغر، ۱۳۸۰، تحلیل داده های اکتشافی، انتشارات دانشگاه تهران
 حسنی پاک علی اصغر، ۱۳۸۱، اصول اکتشافات ژئوشیمیایی، انتشارات دانشگاه تهران
·- حسنی پاک علی اصغر، ۱۳۸۲، ژئوشیمی اکتشافی محیط های سنگی، انتشارات دانشگاه تهران
٬- قربانی منصور، ۱۳۷۹، کانسارهای سرب و روی در ایران، سازمان زمین شناسی کشور

پیوست شماره ا

نتايج مطالعات تيغه نازك

- مطالعات تيغه نازك:

شماره نمونه : Su. 1

بافت : حفرهدار، میکرولیتیک. (آثار اندکی از بقایای بافت پورفیریتیک اولیه نیز دیده میشود). نام سنگ : (تراکی ؟) آندزیت تا (تراکی ؟) آندزیتیک بازالت (اکسیده، سیلیسیفیه و کربناتیزه) کانیهای تشکیل دهنده : بخش اعظم ایـن نمونـه از میکرولیـتهای فلدسـپات تـشکیل شـده است. ایـن میکرولیتها عمدتاً پلاژیوکلازهای سیلیسیفیهای هستند که کربناتیزه بوده و غالباً با اکسیدهای آهن حاشیهدار شدهاند. ممکن است بعضی از این میکرولیتها، ترکیب آلکالن داشته باشند (فلدسپات آلکالن ؟). بهعلت تجزیـه شدهاند. ممکن است بعضی از این میکرولیتها، ترکیب آلکالن داشته باشند (فلدسپات آلکالن ؟). بهعلت تجزیـه حد واسط (آندزین ؟) باشند. به همین دلیل برای نامگذاری بهجای تعیین یک نام از یک سری و ترتیب نـامها با گرایش به یکدیگر استفاده شده است.

قالبهای بلوری کوچکی با ابعاد حداکثر حدود ۲/۴ میلیمتر نیز وجود دارند که تماماً به سیلیس، اکسید آهن، ایدنگزیت و کلریت تجزیه شده و غالباً با اکسیدهای آهن حاشیهدار شدهاند. تجزیه در این بلورها کامل بوده و اثری از کانی اولیه برجای نمانده است ولی فرم بلوری، میکروفنوکریستهای اولیوین را تداعی میکند. حفرات نسبتاً زیادی به قطر تقریبی ۵/۰ تا ۷ میلیمتر نیز دیده میشوند که تماماً با کلسیت، سیلیس (کوارتز کریپتوکریستالین تا میکروکریستالین و بندرت بلورهای بزرگتر) و گاه اکسید آهن پر شدهاند. حفره خالی بندرت دیده میشود. لازم به ذکر است که اکسیدهای آهن غالباً در حاشیه دار کردن بلورهای کلسیت و یا آغشتگی کلسیت دیده می شود.

شکل شماره ۱ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۱- تصویری از مقطع Su.1 در نور ppx . پلاژیوکلازها سیلیسیفیه بوده و گاه قسمتی از آنها کربناتیزه و اکسیده شدهاند. حفرات از کلسیت پر شده و میکرولیتهای زمینه غالباً با اکسیدهای آهن حاشیهدار شدهاند.

بافت : پورفیریتیک (Porphyritic)

نام سنگ : (تراکی؟) آندزیت.

کانیهای تشکیل دهنده : در این نمونه مجموعهای از قالبهای بلوری دیده میشود که کانی اولیه آنها تماماً به اکسیدهای آهن و کانیهای کربناته و گاه سیلیس تجزیه شده و اثری از کانی اولیه بر جای نمانده است. اندازه این قالبهای بلوری حدود ۲/۷۵ تا ۱ میلیمتر بوده و گاه تا ۱/۵ میلیمتر نیز میرسد. بهعلت تجزیه کامل کانی اولیه، نمیتوان نام آنرا دقیقاً تعیین نمود، ولی با این وجود بعضی از قالبهای بلوری تداعی کننده پلاژیوکلاز (؟) و برخی نیز تداعی کننده اولیوین (؟؟) میباشند.

زمینه ریز بلور بوده و عمدتاً از فلدسپات (پلاژیوکلاز و فلدسپات آلکالن)، کربنات و اکسیدهای آهن و کانی اوپک تشکیل شده است. احتمال میرود به مقدار خیلی کم کوارتز ثانوی (؟) نیز وجود داشته باشد. کربنات زمینه دانه ریز بوده و غالباً به اکسیدهای آهن آغشته شده است. تجمع کربنات در بخشهایی از زمینه بیشتر است. رگچه، حفرات و فضاهایی نیز دیده می شود که در آنها بلورهای کلسیت شفاف متبلور شده است. شکل شماره ۲ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۲- تصویری از مقطع Su.2 در نور ppx. این نمونه شامل تعدادی قالب های بلوری است که تماماً به اکسید آهن و قسمتی بـه کربنات و گاه سیلیس تجزیه شده است و اثری از کانیهای اولیه (پلاژیوکلاز و اولیوین؟) بر جای نمانده است.

شماره نمونه : Su. 3

بافت : پورفیریتیک با زمینه میکرولیتی – پیلوتاکسیتیک (Pillow Taxitic) نام سنگ : آندزیت بشدت اکسیده و کربناتیزه.

کانیهای تشکیل دهنده : این نمونه تجزیه شده (اکسیده – کربناتیزه)، عمدتاً شامل فنوکریستهای مستطیلی پلاژیوکلاز با ابعاد حدود ۵/۵ تا ۰/۷۵ میلیمتری است که تماماً به کربنات تجزیه شدهاند. در برخی موارد تجزیه فنوکریستها کامل انجام نشده و آثار کمی از بقایای پلاژیوکلاز اولیه دیده میشود. قسمت دیگری از قالبهای بلوری احتمالاً مربوط به کانیهای مافیکی هستند که تماماً به کلسیت، کلریت، اکسیدهای آها و از قالبهای بلوری احتمالاً مربوط به کانیهای مافیکی هستند که تماماً به کرمنات تجزیه شدهاند. میشود. قسمت دیگری از قالبهای بلوری احتمالاً مربوط به کانیهای مافیکی هستند که تماماً به کلسیت، کلریت، اکسیدهای آهان و گاه و آوالیت و آنار کمی از بقایای پلاژیوکلاز اولیه دیده میشود. قسمت دیگری از قالبهای بلوری احتمالاً مربوط به کانیهای مافیکی هستند که تماماً به کلسیت، کلریت، اکسیدهای آهان و گاه و آوالیت و گاه و آلی و آوالیت و آوالیت (؟) تجزیه شدهاند. این بلورها غالباً با اکسیدهای آهان مانی و شدهاند.

زمینه شامل میکرولیتهای ریز و ظریف فلدسپات (عمدتاً پلاژیوکلاز و احتمالاً مقادیری فلدسـپات آلکـالن) میباشد که فضای بین آنها با کانیهای اپک با ترکیب اکسیدهای آهن پر شده است. (درواقع میکرولیـتهـای فلدسپات در بستری از اکسیدهای آهن اپک قرار دارند).

رگچههای نازک تا نسبتاً ضخیم (به ضخامت تا حدود ۲/۵۵ میلیمتر) از کانیهای کربناته، بهصورت موازی و منشعب (شاخه درختی) در مقطع دیده می شود. کوارتز میکروکریستالین ثانویه هم بهصورت همراه با کربنات و هم بهصورت تجمعی در کنار رگچهها دیده می شود. شایان ذکر است که در کل مقطع دو مورد بلور کوارتز اولیه نیز بهصورت خورده شده (Corroded) و شکسته با لبه های تیز در اندازه های تقریبی حدود ۳/۰ و ۰/۴ میلیمتر دیده می شود.

کانیهای فرعی : کانیهای ایک و احتمالاً آپاتیت

شکل شماره ۳ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۳- تصویری از مقطع Su.3 در نور ppx. در این نمونه فنوکریستهای مستطیلی پلاژیوکلاز تماماً به کربنات تجزیه شدهاند. کانیهای مافیک اولیه تیز به کلسیت، کلریت، اورالیت و اکسیدهای آهن تجزیه شدهاند. زمینه از میکرولیتهای فلدسپات و اکسیدهای آهن تشکیل شده و رگچههای کلسیتی نیز در آن مشاهده می گردد.

بافت : آثار بسیار ضعیفی از بافت پورفیریتیک اولیه – زمینه میکرولیتی **نام سنگ :** (تراکی) آندزیت اکسیده – کربناتیزه

کانیهای تشکیل دهنده: کانیهای تشکیل دهنده این سنگ بشدت تجزیه شده و فقط آثاری از قالبهای بلوری اولیه باقی مانده است. بعضی از قالبهای بلوری، مستطیلی بوده و پلاژیوکلاز را تداعی می کنند. برخی دیگر مشابه با کانیهای مافیک (پیروکسن ؟؟) بوده ولی بهعلت تجزیه کامل، قابل تشخیص دقیق نمیباشند. حاصل آلتراسیون این کانیها، کانیهای کربناته و اکسیدهای آهن است. در برخی از بلورهایی که کاملاً به کربنات تجزیه شدهاند، اکسیدهای آهن بصورت حاشیهای در پیرامون آنها مشاهده میشود. در برخی موارد نیز کانی اولیه به مجموعه درهمی از کانیهای کربناتی و اکسیدهای آهن تجزیه شده میشود. در برخی موارد نیز اکسیدهای آهن بیشتر میباشد. درازای فنوکریست های تجزیه شده حدود ۱ میلیمتر و بندرت تا ۱/۵ میلیمتر تخمین زده می شود .

زمینه از میکرولیتهای بسیار ریز و ظریف فلدسپات (و احتمالاً فلدسپات آلکالن ؟) تـشکیل شـده اسـت. ایـن میکرولیتهای فلدسپاتی غالباً پلاژیوکلاز میباشند ولی بهعلت ابعاد بسیار ریز نوع آنهـا قابـل شناسـایی دقیـق نمیباشد. همچنین با توجه به ترکیب سنگ بهنظر میرسد فلدسپات آلکالن نیز وجود دارد.

گاه دانههای ریزی با ابعاد حدود ۰/۱ میلیمتری دیده میشوند که تماماً به اکسیدهای آهن و مقادیری ایدنگزیت تجزیه شدهاند. این دانهها که تعداد آنها اندک است کانیهای مافیک تماماً تجزیه شده (اولیوین ؟؟) هستند.

در زمینه علاوه بر میکرولیتهای فلدسپات، دانههای ریز و فراوانی از کانیهای اکسید آهن اپک نیز بهوفور وجود دارد. پراکندگی اکسیدهای آهن در زمینه یکنواخت نبوده و در برخی مناطق تجمع و تمرکز بیشتری دارند. رگچههای کربناتی نیز در زمینه وجود دارند که گاه دارای حاشیه نازکی از اکسید آهن هستند. شکل شماره ۴ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۴- تصویری از مقطع Su.4 در نور ppx. در این نمونه پلاژیوکلازها تماماً به کربنات تجزیه شدهاند. کانیهای مافیک اولیـه تیـز به کلسیت، اکسیدهای آهن و مقادیری ایدنگسیت تجزیه شدهانـد. زمینـه از میکرولیـتهـای فلدسـپات و اکـسیدهای آهـن تـشکیل شـده و رگچههای کلسیتی نیز در آن مشاهده می گردد.

بافت : آثاری از بافت پورفیریتیک – زمینه میکرولیتی (بهعلت شدت تجزیه فنوکریستها از بین رفته و فقط قالبهای بلوری آنها دیده میشود).

نام سنگ : تراکی آندزیت بشدت کربناتیزه – اکسیده

کانیهای تشکیل دهنده : کانیهای تشکیل دهنده این سنگ بشدت تجزیه شده (عمدتاً کربناتیزه و اکسیده) و بهصورت قالبهای بلوری عمدتاً کربناتی همراه با کمی اکسیدهای آهن مشاهده میشوند. بر اساس شکل و فرم قالبهای بلوری، این فنوکریستها احتمالاً از نوع پلاژیوکلاز بودهاند که غالباً با کانیهای اپ حاشیه دار شده اند. اندازه تقریبی آنها عمدتاً ۱ تا ۱/۵ میلیمتر میباشد ولی برخی ابعاد کمتر(حدود ۲/۰ میلیمتر) ویا بیشتری (تا ۲ میلیمتر) دارند. تجزیه این فنوکریستها کامل بوده و اثری از کانیهای اولیه بر جای نمانده است. بعضی از این فنوکریستها نیز ممکن است از کانیهای مافیک (؟) باشند که بعلت تجزیه کامل هیچ آثاری از بلور اولیه آنها باقی نمانده است. زمینه میکرولیتی است و از میلههای ریز و ظریفی از فلدسپات (پلاژیوکلاز و فلدسپات آلکالن)، کربنات فراوان و کانیهای اپک نسبتاً فراوان با ترکیب اکسیدهای آهن تشکیل شده است. در زمینه رگچه های کربناتی نیز وجود دارد که در مواردی به اکسید آهن آغشته شدهاند.

توجه: بهنظر می رسد که این نمونه مشابه با نمونه قبلی (Su. 4) است با این تفاوت که در اینجا تجزیـه بـه کربنات در مقایسه با اکسیدهای آهن از شدت بیشتری برخوردار است. در حالیکـه در نمونـه قبلـی تجزیـه بـه اکسید آهن نسبت به کربنات شدت بیشتری داشت.

شکل شماره ۵ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۵- تصویری از مقطع Su.5 در نور ppx. در این نمونه فنوکریستهای مستطیلی پلاژیوکلاز تماماً به کربنات تجزیـه شـده و بـا کمی اکسیدهای آهن همراه شدهاند. کانیهای مافیک اولیه تیز به کلسیت و اکسیدهای آهن تجزیه شدهاند. زمینه از میکرولیتهای فلدسپات و اکسیدهای آهن تشکیل شده و رگچههای کلسیتی آغشته به اکسیدهای آهن نیز در آن مشاهده می گردد.

شماره نمونه : Su. 6

بافت: پورفیریتیک، در برخی قسمتها کلاستیک

نام سنگ : داسیت (کلریتیزه، سریسیتیزه، آرژیله و گاه کربناتیزه و سیلیسیفیه).

کانیهای تشکیل دهنده: فلدسپات و کانیهای مافیک کاملاً تجزیه شده فنوکریستهای این نمونه را تشکیل می دهند. فلدسپات به صورت بلورهای شکل دار تا نیمه شکل دار پلاژیوکلاز به طول تقریبی ۲۵/۰(و به درت ۲۵/۰ میلیمتر) تا ۳ میلیمتر (و گاه تا ۲۵/۵ میلیمتر) مشاهده می شوند. پلاژیوکلازها ترکیب شیمیائی متوسط (حدود اولیگوکلاز تا آندزین) داشته و غالباً سریسیتیزه و کمی آرژیلی شده اند. ماکل های پلی سنتتیک و کارلسباد در آنها عمومیت دارد. بعضی از بلورها توسط رگچه های کربناتی قطع شده اند. ماکل های پلی سنتیک و کارلسباد در آنها عمومیت دارد. بعضی از بلورها توسط رگچه های کربناتی قطع شده اند. ماکل های پلی سنتیک و کارلسباد در آنها عمومیت دارد. بعضی از بلورها توسط رگچه های کربناتی قطع شده اند و در برخی نیز ایس رگچه ها خالی می باشند. به نظر می رسد تعداد اند کی از بلورهای ۲۰۱۵ میلیمتری فلد سپاتی ترکیب آلکالن داشته باشند. کانیهای مافیک اولیه کاملاً به کلریت و اند کی کربنات همراه با دانه های بسیار ریز و ایک با ترکیب اکسیدهای آهن تجزیه شده و آثاری از آنها باقی نمانده است. ابعاد قالبهای بلوری حدود ۲ تا ۳ میلیمتر (و به درت ۵/۰ آهن تجزیه شده و آثاری از آنها باقی نمانده است. ابعاد قالبهای بلوری حدود ۲ تا ۳ میلیمتر (و به درت ۵/۰ آهن تجزیه شده و آثاری از آنها باقی نمانده است. ابعاد قالبهای بلوری حدود ۲ تا ۳ میلیمتر (و به درت ۵/۰ آهن تجزیه شده و آثاری از آنها باقی نمانده است. ابعاد قالبهای بلوری حدود ۲ تا ۳ میلیمتر (و به درت ۵/۰ میلیمتر) می باشد.

زمینه: زمینه شامل کوارتز، فلدسپات (غالباً آرژیلی)، کلریت، کلسیت و کانیهای اپک میباشد. گاه رگچههای نازک خالی و یا پر شده با کربنات نیز دیده می شود.

شکل شماره ۶ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۶- تصویری از مقطع Su.6 در نور ppx. در این نمونه پلاژیوکلازها تماماً سریسیتی و آرژیلی شده و کانیهای مافیک اولیه تیـز به کلریت، کلسیت و اکسیدهای آهن تجزیه شدهاند. زمینه از فلدسپات آرژیله، کلریت، کلسیت و اکسیدهای آهن تشکیل شده است.

بافت: پورفیریتیک با زمینه کریپتوکریستالین تا نهانبلور

نام سنگ : داسیت بشدت تجزیه شده

کانیهای تشکیل دهنده : پلاژیوکلاز و کانیهای مافیک کاملاً تجزیه شده، فنوکریستهای این نمونه را تشکیل میدهند. پلاژیوکلازها در اندازههای تقریبی تا ۱ میلیمتر به صورت بلورهای شکل داری که تماماً به سریسیت و سیلیس تجزیه شدهاند مشاهده می شوند. گاه بخش کوچکی از این بلورها کربناتیزه نیز شده است. به علت تجزیه کامل به جز قالب بلوری اثری از پلاژیوکلاز اولیه برجای نمانده است.

کانیهای مافیک اولیه نیز کاملاً تجزیه شده و فقط قالب های بلوری آنها برجای مانده است. این قالبهای بلوری غالباً لوزی شکل بوده و آمفیبول را تداعی می کنند. محصول تجزیه این کانیها عمدتاً اکسیدهای آهن بوده و بلورها با کانیهای ایک حاشیهدار شدهاند. اندازه تقریبی این قالبهای بلوری از حدود ۲/۲ میلیمتر تا بوده و بلورها با کانیهای ایک حاشیهدار شدهاند. اندازه تقریبی این قالبهای بلوری از حدود ۲/۲ میلیمتر تا نزدیک به ۱ میلیمتر متغیر میباشد ولی بیشتر در اندازه های تقریبی کوچک دیده می شوند و فراوانی بلورهای از میلیمتری کمتر است.

زمینه بسیار دانهریز و نهانبلور بوده و عمدتاً از کوارتز تـشکیل شـده اسـت. احتمـالاً در زمینـه مقـادیر انـدکی سریسیت (بهصورت تیغکهای بسیار ریز و ظریف) و فلدسپات و کانیهای اپک (بهصورت دانههای بسیار ریز) نیز وجود داشته باشد.

شکل شماره ۷ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۷ – تصویری از مقطع Su.7 در نور ppx. در این نمونه فنوکریستهای پلاژیوکلاز تماماً به سریسیت، کوارتز و کربنات تجزیه و با کمی اکسیدهای آهن همراه شدهاند. کانیهای مافیک اولیه (آمفیبول؟) تیز به کلسیت و اکسیدهای آهن تجزیه شدهاند. زمینه دانهریز بوده و عمدتاً از کوارتز، مقداری سریسیت، فلدسپات و کانیهای اوپاک تشکیل شده است.

بافت : پورفیریتیک

نام سنگ : داسیت

کانیهای تشکیل دهنده : پلاژیوکلاز، کوارتز و کانیهای مافیک، فنوکریستهای موجود در این نمونه را تشکیل میدهند. پلاژیوکلازها به صورت بلورهای شکل دار با اندازه های تقریبی ۱ تا ۲ میلیمتر و گاهی تا ۵ میلیمتر دیده می شوند که غالباً سریسیتیزه و گاه بطور ضعیف آرژیله هستند. بعضی از بلورها را رگچههای نازک کربناتی قطع می کند، بندرت بعضی از بلورها کمی سیلیسیفیه نیز می باشند. ماکل در آنها بسیار ضعیف است. گاهی بطور نامحسوس ماکل کارلسباد دارند، گاهی نیز در بخشی از برخی بلورها بطور ضعیف ماکل پلاژیوکلازها، دارای ترکیب آلکالن ؟ می باشند.

کوارتز : به تعداد کم با ابعاد ۵/۵ تا ۰/۷۵ میلیمتر و غالباً بهصورت خورده شده (Corroded) دیده می شود.

کانیهای مافیک کاملاً تجزیه شده و به کلریت، کانیهای کربناتی و گاه کانیهای اکسیدهای آهن اپک تبدیل شدهاند. اثری از کانیهای مافیک اولیه بر جای نمانده ولی با توجه به شکل قالبهای بلوری احتمالاً از نوع آمفیبول بودهاند. اندازههای تقریبی این قالبهای بلوری غالباً بین ۰/۵ تا ۱ میلیمتر بوده و تعدادی از آنها تا ۲ میلیمتر نیز میباشد.

زمینه : زمینه عمدتاً شامل کوارتز و فلدسپات آرژیله – سریسیتیزه است. کانیهای اپک کلریت و کربنات نیز در زمینه دیده میشود. همچنین کانیهای کربناته بهصورت رگچههای نازک نیز مشاهده میشوند. شکل شماره ۸ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۸- تصویری از مقطع Su.9 در نور ppx. در این نمونه فنوکریستهای پلاژیوکلاز در اندازه هـای تقریبـی از ۱ تـا ۲ میلیمتـر و حداکثر تا ۵ میلیمتر بوده و غالباً سریسیتیزه و گاه بطور ضعیف آرژیله هستند. کانی مافیک سالم دیده نمی شود.

شماره نمونه : Su. 10

بافت : پورفیریتیک

نام سنگ: داسیت تجزیه شده (کربناتیزه و کلریتیزه)

کانیهای تشکیل دهنده : پلاژیوکلاز، کوارتز و کانیهای مافیک، فنوکریستهای موجود در این نمونه را تشکیل میدهند. پلاژیوکلازها بهصورت بلورهای شکلدار تا نیمهشکلدار با اندازههای تقریبی ۱/۵ تا ۲ میلیمتر دیده میشوند. اغلب این بلورها کم و بیش کربناتیزه بوده و بندرت در بعضی از آنها کمی تجزیه به کانیهای رسی- میکایی نیز دیده میشود. ماکل در همه آنها عمومیت نداشته و ماکلهای کارلسباد و پلیسنتتیک در برخی از بلورها دیده می شود. ماکل در همه آنها عمومیت نداشته و ماکلهای کارلسباد و پلیسنتیک در کانیهای مافیک موجود کاملاً تجزیه شده و به کلریت، کربنات و اکسید آهن تبدیل شدهاند بهطوری که به جز قالب بلوری اثری از کانی اولیه آنها بر جای نمانده است. اندازه تقریبی این قالبهای بلوری غالباً بین ۱/۰ تا نزدیک به ۱ میلیمتر بوده و با توجه به شکل آنها به نظر میرسد که کانی مافیک اولیه آمفیبول بوده است. کوارتز بسیار نادر بوده و به صورت بلورهای کوچکی که غالباً خورده شده (Corroded) هستند، دیده می شود. این بلورهای کوارتز در اندازههای حداکثر تا ۵/۰ میلیمتر مشاهده میشوند.

زمینه ریزدانه و کریپتوکریستالین بوده و از کوارتز، فلدسپات، مقادیر کمی دانههای ریز کربنات و اکسیدهای آهن اپک تشکیل شده است. شکل شماره ۹ تصویری از مقطع این نمونه را در نور PPX نشان میدهد.

شکل شماره ۹- تصویری از مقطع Su.10 در نور ppx. در این نمونه فنوکریستهای پلاژیوکلاز در اندازه های تقریبی از ۱⁄۵ تــا ۲ میلیمتـر دیده شده و غالباً کربناتیزه هستند. کانی مافیک سالم دیده نمی شود و همه آنها تماماً به کلریت، کربنات و اکسید آهن تجزیه شده و اثری از کانی اولیه به جز قالب بلوری آنها به جای نمانده است

شماره نمونه: ۱۵p

بافت: پورفیریتیک با زمینه میکرولیتی و اینترسرتال

نام سنگ: آندزیت (تا احتمالاً تراکی آندزیت ؟) به شدت تجزیه شده

کانیهای تشکیل دهنده : فنوکریستهای تشکیل دهنده این نمونه کاملاً تجزیه شده و به جز قالبهای بلوری اثری از کانی اولیه آنها برجای نمانده است. کانیهای ثانویه پر کننده این قالبهای بلوری عمدتاً شامل کلسیت (گاهی آغشته به اکسیدهای آهن) و کمتر کوارتز کریپتوکریستالین تا میکروکریستالین و گاه سریسیت است. این قالبهای بلوری عمدتا تداعی کننده پلاژیوکلاز هستند. احتمالاً در سنگ اولیه فنوکریستهای مافیک(؟) نیز وجود داشته ولی در حال حاضر اثری از آنها باقی نمانده است. اندازه تقریبی فنوکریستها از ۷۵٪ میلیمتر تا نزدیک ۲ میلیمتر بوده و حدود ۲۰٪ کل نمونه را تشکیل میدهند.

زمینه از میکرولیتهای پلاژیوکلاز تشکیل شده و فضای بین آنها با کانیهای ثانویه کلسیت، کلریت، کوارتز کریپتوکریستالین تا میکروکریستالین (و گاهی کالسدونی)، دانههای اُپک و گهگاه کانیهای میکایی پر شده است. گاه بلورهای ریز و غالباً سوزنی بیوتیت نیز در زمینه دیده میشود.

شماره نمونه: ۱۶p

بافت: پورفیریتیک

نام سنگ: داسیت تجزیه شده (داسیت تا داسیتیک آندزیت ؟)

کانیهای تشکیل دهنده : پلاژیوکلاز، فلدسپات آلکالن، کوارتز و آمفیبول، فنوکریـستهـای موجـود در ایـن نمونه را تشکیل میدهند.

پلاژیوکلازها بهصورت بلورهای شکلدار تا نیمهشکلدار در اندازههای حدود ۰/۵ تا ۲ میلیمتر دیده میشوند. این بلورها غالبا سریسیتیزه، آرژیله و گاه کربناتیزه میباشند. ترکیب شیمیایی پلاژیوکلازها متوسط و در حد اولیگوکلاز – آندزین میباشد. بعضی از بلورها نیز زونه بوده و تغییر در ترکیب را نشان میدهند. فلدسپات آلکالن به تعداد کم و به صورت بلورهای بزرگتر (حدود ۳ تا ۳/۵ میلیمتر) مشاهده شده و آرژیله میباشد.

کوارتز به تعداد اندک و بهصورت بلورهای شکسته و گوشهدار در اندازههای تقریبی حدود ۰/۳ میلیمتـر دیـده می شود.

آمفیبول تماما به کلریت و کربنات تجزیه شده و تنها قالب بلوری آن بر جای مانده است. این قالبهای بلوری که غالبا در اندازههای ۰/۳ تا ۱/۵ میلیمتر و گاهی بزرگتر از ۲ میلیمتر دیده میشوند، مشخص کننده فرم بلوری هورنبلند میباشند.

زمینه، تمام بلورین بوده و از فلدسپات آرژیله (شامل پلاژیوکلاز و فلدسپات آلکالن)، کوارتز بی شکل، و کمی آمفیبول کلریتیزه تشکیل شده است. کانیهای ثانویه زمینه نیز شامل کانیهای رسی، کربنات، کلریت و اکسیدهای آهن میباشند.

دانههای اُپک و به ندرت آپاتیت نیز به عنوان کانیهای فرعی در مقطع مشاهده می گردد.

شماره نمونه: ۱۸**p**

بافت: پورفیریتیک

نام سنگ: آندزیت

کانیهای تشکیل دهنده: فنوکریستهای تشکیل دهنده این نمونه که غالبا در اندازههای تقریبی ۱/۵ تا ۱/۵ میلیمتر و گاهی تا ۲ میلیمتر دیده میشوند، کاملاً تجزیه شده (عمدتا کربناتیزه، کلریتیزه و مقادیری اکسیده) و به جز قالبهای بلوری، اثری از کانی اولیه آنها برجای نمانده است.

تعدادی از قالبهای بلوری مستطیلی شکل بوده و به نظر میرسد پلاژیوکلازهایی هستند که به کلسیت (گاه آغشته به آکسیدهای آهن) و گاه به سریسیت تجزیه شدهاند. پلاژیوکلازهایی که به کانیهای کربناته تجزیه شدهاند، در برخی بخشها سیلیسیفیه نیز شدهاند. بندرت جابجایی با کلریت نیز دیده میشود. کانیهای مافیک تماماً به کانیهای کربناته (آغشته به اکسیدهای آهن)و یا کلریت تجزیه شدهاند. با توجه به شکل قالب بلوری بر جای مانده به احتمال زیاد کانی مافیک اولیه پیروکسن (؟) بوده است. زمینه میکرولیتی و دارای بافت اینترسرتال بوده و در فواصل بین میکرولیتهای پلاژیوکلاز کانیهای ثانویه کلریت، کربنات و اکسیدهای آهن تشکیل شده است. بطور پراکنده کانیهای اُپک، دانههای بسیار ریز کوارتز و همچنین حفرات پر شده از کانیهای کربناتی نیز در زمینه مشاهده می شود.

شماره نمونه: ۱۹p

بافت: پورفیریتیک

نام سنگ: کوارتز آندزیت (داسیتیک آندزیت)

کانیهای تشکیل دهنده: فلدسپاتها (شامل پلاژیوکلاز و فلدسـپات آلکـالن) و کـانیهـای مافیـک (شـامل بیوتیت و آمفیبول؛، فنوکریستهای موجود در این نمونه را تشکیل میدهند.

فلدسپاتها که غالبا در اندازههای تقریبی ۲/۳ میلیمتر تا ۱/۵ میلیمتر و گاهی تا نزدیک ۲ میلیمتر مشاهده میشوند، عمدتاً پلاژیوکلاز و کمتر فلدسپات آلکالن بوده و به شدت آرژیله و کربناتیزه شدهاند. گاهی در اطراف بلورهای پلاژیوکلاز، فلدسپات آلکالن آرژیله مشاهده می شود. به ندرت قسمتهای کوچکی از پلاژیوکلازها به کلریت نیز تجزیه شده است.

کانیهای مافیک شامل بیوتیت و احتمالاً آمفیبول میباشد. بیوتیت به صورت میلههای باریک حدود ۰/۲ تا ۰/۳ میلیمتری ونیز بصورت بلورهای شکلدار تا ۱ میلیمتری مشاهده می شود. بخشی از بلورهای بیوتیت به مسکویت تجزیه شده و از بیوتیت آهندار اولیه آثار کمی بر جای مانده است.

تعدادی از بلورهای مافیک اولیه به طور کامل تجزیه شده و به کلریت و کانیهای کربناتی تبدیل شده اند. بر اساس شکل بلوری، احتمالاً کانی اولیه از نوع آمفیبول (؟) بوده است. زمینه از میکرولیتهای پلاژیوکلاز و کانیهای اُپک (بهصورت دانههای ریز و نسبتاً فراوان) و احتمـالاً مقـادیری بلورهای فلدسپات آلکالن و گاه کوارتز بیشکل تشکیل شده است. لکههای کربناتی نیـز در تمـام زمینـه دیـده میشود.

شماره نمونه: ۲۲p

بافت: بافت اولیه ازبین رفته است. **نام سنگ**: سنگ آذرین به شدت تجزیه شده اسیدی (سیلیسینیه، کربناتیزه، اکسیده و کلریتیزه) در حد ترکیب ریولیت یا معادل درونی آن گرانیت؟

کانیهای تشکیل دهنده: این نمونه به شدت سیلیسیفیه، کربناتیزه، کلریتیزه، اکسیده و آرژیله بوده و در اثر شدت آلتراسیون بافت و اغلب کانیهای اولیه آن از بین رفته است. کوارتز بخش اعظم نمونه را تـشکیل داده و گاه مقادیری فلدسپات کربناتیزه نیز همراه آن مشاهده می شود.

تجمعی از بلورهای کلسیت در قسمتی از نمونه دیده میشود. بعضی از این بلورهای کلسیت با اکسیدهای آهن حاشیهدار شده و گاهی نیز تماماً با اکسیدهای آهن آغشته شده است. در بخشهایی از مقطع اکسیدهای آهن به همراه کلریت دیده میشود و گاهی نیز کانیهای ثانویه کلریت، کلسیت و اکسیدهای آهن همراه هم مشاهده می گردند. توزیع این کانیها در بخشهای مختلف مقطع یکسان نبوده و هریک در بخشهایی از مقطع، تمرکز بیشتری نشان میدهند. کانیهای اکسید آهن اُپک نیز بخشهایی از سنگ را اشغال کردهاند. به ندرت اسفن نیز در نمونه مشاهده می گردد.

شماره نمونه: ۲۱p

بافت: بافت اولیه سنگ در اثر آلتراسیون شدید از بین رفته و در حال حاضر آثـاری از بافـت دگرگـونی(؟) در بخشهایی از مقطع دیده میشود.

نام سنگ: سنگ اسیدی تجزیه شده، دگرسان شده و احتمالا دگرگون شده (تکتونیزه).

کانیهای تشکیل دهنده: این نمونه به شدت تجزیه شده و کانیهای ثانویه عمدتا شامل کوارتز، اکسیدهای آهن، کانیهای کربناته، سریسیت و مقادیری کلریت است.

کوارتز یکی از تشکیل دهندههای عمده محسوب شده و به صورتهای مختلفی دیده می شود. گاهی کوارتز به صورت پورفیروبلاستهای ۱ تا ۱/۵ میلیمتری که دارای خاموشی موجی می باشد دیده می شود. چنین پدیده ای بیانگر آن است که این نمونه تحت تأثیر فشار وعوامل تکتونیکیواقع شده است. در بخشهایی از مقطع نیز کوارتزهای متامورف رکریستالیزه (با تبلور مجدد) با حواشی مضرَّس دیده می شوند که در هم قفل شده اند. همچنین در بخشهایی از مقطع، کوارتز به صورت دانه های ریز و شکسته دیده می شود. قطعات متامورف دارای شیستوزیته نظیر میکا شیست و کوارتزیت نیز حاوی بلورهای ریز و دگرگون شده کوارتز هستند. گاه دانه های فلدسپات به تعداد کم با خاموشی موجی وکمی سرسیتیزه نیز دیده می شود.

حضور کانیهای کربناته در مقطع چشمگیر است. غالباً بلورهای کلسیت آغشته به اکسیدهای آهن به صورت رگههایی مشاهده می گردد. در این بخش کربناتی گاه واحدهای ایزوتروپ مشکوک به گارنت؟؟ دیـده مـیشـود (شناسایی دقیق این کانیهای ایزوتروپ به علت مغشوش بودن نمونه ممکن نبوده و XRD پیشنهاد میشود). کانیهای اکسید آهن نیز گسترش زیادی داشته و گاه به تنهایی و گاه آغـشته با کانیهای کربناته در همه قسمتها حضور چشمگیری دارد. گاهی نیز به صورت خمیرهای اُپک گونه بلورهای کوارتز را در برگرفته است. علاوه بر آنها در بخشهایی از نمونه، کانیهای اکسید آهن همراه با کلریت در کنار کانیهای سیلیکاتی نیـز مشاهده میشوند.

پیوست شماره۲ نتایج آنالیز ۲۹ نمونه ژئوشیمی

پیوست شماره ۳

نتایج مطالعات ۲۹ نمونه کانی سنگین

پیوست شماره۴ نتایج آنالیز ۱۷ نمونه برداشت شده از میان بخشهای مختلف نمونههای کانی سنگین

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ррт	ррт	ррт	ppb	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	ІСЗМ	IC3E	ІСЗМ	FA3	ІСЗМ	IC3E	IC3E	ІСЗМ	IC3E	ІСЗМ	ІСЗМ
SK-1	0.12	37900	16.1	3	0	531	1.1	0.2	133000	0.1	40.2
SK-2	0.06	48800	10.8	1	0	365	1.4	0	96000	0.1	45.9
SK-3	7.46	33200	29.6	5	0	278	0.9	0.1	63900	74.1	27.5
SK-4	0.14	11900	5.5	2	0	54.1	0	0	19500	0.3	6.6
SK-5	0.11	15500	4	1	0	80.3	0	0	28500	0.2	15.6
SK-6	0.11	15600	8.2	3	0	110	0.2	0	35900	0.2	13.7
SK-7	1.66	21900	44.3	6	0	719	0.4	0.1	75900	17.4	21.4
SK-8	0.32	29900	31.1	5	0	794	1	0	164000	6.4	31.3
SK-9	0.16	60700	7.2	0	0	261	1.8	0.1	110000	0.2	56
SK-10	0.33	34300	13.7	3	0	205	1.1	0.3	143000	0.2	36.1
SK-11	0.24	40400	19.7	10	0	494	1	0	137000	0.4	66.2
SK-12	0.13	66300	9.1	1	0	207	1.8	0	76100	0.2	66.6
SK-13	0.27	57300	10	2	0	819	0.9	0.1	102000	0.1	59
SK-14	0.33	70400	10.8	0	0	452	1	0.1	81000	0	62.7
SK-15	0.24	26400	15.7	2	0	125	0.7	0.2	193000	1.3	24.7
SK-16	0.11	14200	5.6	0	0	571	0.5	0	242000	0.2	24.7
SK-17	0.2	20700	10.5	3	0	85.1	0.7	0.7	212000	0	31
SK-18	0.15	21300	8	1	0	41	0.6	0.3	206000	0.1	26.1
SK-19	0.21	72100	1.7	1	0	304	1.4	0	52200	1.1	58.4
SK-20	0.09	73700	2.8	0	0	90	1.7	0	47300	0	72.9
SK-21	0.12	45700	11.1	1	0	56.3	1	0.2	159000	0	41.2
SK-22	0.03	60900	4.3	1	0	126	1.5	0	106000	0	73.1
SK-23	0.19	40100	6.9	0	0	227	0.6	0	159000	0.3	36
SK-24	0.19	14700	5.4	2	0	281	0.3	0	205000	0.4	22.1
SK-25	0.21	14800	3.9	2	0	889	0.2	0	128000	0.4	16.2
SK-26	0.16	27000	4.8	2	0	217	0.5	0.1	18700	0.1	20.9
SK-27	0.2	25900	7.5	3	0	274	0.6	0.1	15600	0.2	28.1
SK-28	0.14	26100	4.8	2	0	339	0.5	0.3	20700	0.2	26.1
SK-29	0.23	15300	8.6	5	0	86.9	0.3	0	9220	0	13.9
SK-30	0.1	21600	44.7	25	0	159	0.4	0.1	58800	0.2	20.7
SK-31	0.03	22100	11.7	4	0	190	0.5	0.1	61500	0.2	21.4
SK-32	3.17	12900	26.8	4	0	1750	0.3	0	55100	53	16.9
SK-33	0.19	30900	14	4	0	170	0.7	0	112000	0.5	30.9
SK-34	0.13	59300	7.8	1	0	1220	1.6	0	124000	0.4	63.9
SK-35	0.1	61600	5.6	0	0	274	1.7	0	101000	0.2	58.8
SK-36	0.32	71100	7.8	1	0	457	1.2	0.1	63900	0.1	65.2
SK-37	0.33	68200	72	15	0	2100	1	0.1	79600	0.2	65.7
SK-38	0.19	32300	12.4	103000	0	229	0.6	0.3	186000	0	43.9
SK-39	0.2	17200	13	0	0	56.4	0.6	0.2	236000	0.2	27.3
SK-40	0.12	37000	15.5	4	0	148	1.9	0.4	189000	0.2	43.7
SK-41	0.08	78000	8.5	0	0	187	2.3	0.1	49000	0	73.2
SK-42	0.08	76900	2.5	0	0	1450	2.7	0	34500	0	74.9
SK-43	0.16	82800	5	1	0	581	2.1	0.1	34100	0.3	79.9
SK-44	0.16	72800	1.2	2	0	247	1.7	0.5	52500	0	/8.8
SK-45	0.42	0040	4.3	4	0	290	0.2	0	320000	1.2	9.1
SN-40	0.12	0320	25.0	1	0	100	0	0	290000	0.4	0.0
SK-41	0.12	22100	4.1	0	0	212	0.2	0	57500	0.3	12.7
SK-40	0.15	23100	5.2	0	0	10/	0.5	01	43300	0.1	12.9 22.1
SK-49	0.11	14200	J.Z	0	0	104	0.5	0.1	43300	0.2	27.0
SK-51	0.24	26000	1.4		0	101	0.3	0.1	2/200	0.1	21.0
SK-52	0.04	20300	5.7	1	0	208	0.4	0.1	1/500	0.2	18/
SK-53	0.20	19000	6.5	2	0	103	0.3	01	14300 <u>4</u> 8100	01	22.2
SK-54	0.13	18700	20.7	6	0	123	0.4	0.1	43100	0.1	22.3
SK-55	0.30	18800	6.8	1	0	320	0.5	0.1	287000	0.2	19.5
SK-56	0.07	11600	14.4	4	0	124	0.3	0	17900	0.1	19.6
SK-57	00	59700	7 1		0	944	0.5	0	81700	0.4	35.4
SK-58	0.0	68000	8.1	1	0	338	1.9	0.1	129000	0.1	71 4
SK-59	0.34	67000	271	156	0	404	1.5	0.1	83700	0.7	65.4
SK-60	0.21	39400	11.7	0	0	201	1.3	0.1	221000	0.7	53.1
SK-61	0.07	34900	7.9	0	0	101	1	0.2	217000	0.2	57.1

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ррт	ррт	ррт	ppb	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	IC3M	FA3	ІСЗМ	IC3E	IC3E	ІСЗМ	IC3E	ІСЗМ	ІС3М
SK-62	0.17	41600	1.6	0	0	71.4	0.7	0	225000	0	39.4
SK-63	0.13	36600	11.4	1	0	68.8	1.2	0.5	222000	0	58.9
SK-64	0.14	82000	4.6	0	0	183	2.5	0.5	113000	0	94.3
SK-65	0.13	100000	0	0	0	233	2.8	0	40200	0	120
SK-66	0.67	97700	1.8	0	0	435	2.7	0	20900	0	122
SK-67	0.14	5980	2.8	0	0	133	0	0	346000	1.2	11
SK-68	0.04	10800	1.6	0	0	905	0.2	0	326000	0	18.6
SK-69	0.05	8680	3.9	7	0	268	0.2	0	292000	0.2	14.8
SK-70	0.11	30400	0	6	0	318	0.3	0	55000	0.1	27.2
SK-71	0.15	28900	0	5	0	137	0.4	0	53800	0.1	27.6
SK-72	0.05	33900	3	6	0	172	0.7	0.1	49300	0.1	39.9
SK-73	0.02	20400	0	8	0	343	0	0	20200	0.1	28.3
SK-74	0.37	18300	3	7	0	299	0.4	0	53500	0.1	19.3
SK-75	0.34	17500	8.1	13	0	121	0.7	0	23400	0.5	21.8
SK-76	0.68	25000	6.3	11	0	184	0.9	0.1	4460	0.1	29.7
SK-77	0.24	24700	3.8	8	0	127	0.6	0.2	4480	0	38.2
SK-78	0.29	27800	6.9	7	0	157	0.8	0.1	84300	0.2	38.1
SK-79	0.19	45400	2.5	0	0	528	0.6	0	193000	0	70.4
SK-80	0.72	23000	11.1	5	0	118	0.5	0	271000	12.4	36.4
SK-81	0.26	42900	5.2	6	0	168	0.8	0	193000	1.4	60
SK-82	0.11	34600	4	6	0	123	0.6	0	124000	0.2	53.2
SK-83	0.12	11500	5.6	7	0	49.7	0.4	0	264000	0.2	24.3
SK-84	0.21	40300	3.8	8	0	328	0.7	0	62300	0.2	71.6
SK-85	0.29	66000	26.4	23	0	112	1.4	0.2	45800	0.1	75.7
SK-86	0.45	63400	81.6	93	0	188	1.6	0.2	64900	0.1	68.5
SK-8/	0.21	63400	4.4	8	0	306	1.7	0.2	131000	0.3	91.9
SK-88	0.41	53000	42.8	17	0	59	0.8	0.1	180000	0.3	05.2
SK-89	0.15	26500	3.2	8	0	115	0.6	0.1	215000	0.3	34.9
SK-90	0.22	49000	10.0	0	0	233	1.3	0.2	144000	0.6	49.4
SK-97	0.29	74000	5 1	4	0	784	0.9	0.2	60600	0.0	40.0
SK-92 SK-93	0.15	53900	9.1	3	0	941	1.6	03	91800	0	66.1
SK-94	0.33	22500	3.6	1	0	170	0.4	0.0	61000	0.3	24.2
SK-95	0.31	23300	6.8	3	0	768	0.1	0	85900	0.6	24.6
SK-96	0.29	22700	11.5	7	0	487	1.3	0.1	2030	0	36.3
SK-97	0.28	12800	11.1	. 12	0	104	0.5	0	3250	0	12.7
SK-98	0.21	12800	4.2	3	0	101	0.3	0	1130	0	13
SK-99	0.1	18300	11.7	3	0	132	0.5	0.1	4720	0	23.2
SK-100	0.12	17600	5.9	4	0	172	0.5	0.2	7420	0.1	25.1
SK-101	0.43	26100	4.6	2	0	1200	0.5	0	160000	0.2	36.9
SK-102	13.4	35400	33.1	5	0	158	0.8	0	171000	12.1	41.5
SK-103	0.95	11300	26.5	2	0	397	0.4	0	237000	16.8	21.1
SK-104	16.9	17600	176	7	0	1970	0.8	0.1	217000	9.7	27.8
SK-105	0.1	10900	2.1	1	0	1670	0.5	0	263000	0.2	19.7
SK-106	0.04	13900	4.4	1	0	215	0	0	128000	0.2	14.7
SK-107	0.04	10700	0.9	0	0	470	0	0	41800	0.5	20.4
SK-108	0.03	7470	2.2	2	0	51.1	0.3	0	252000	0.4	14
SK-109	0.06	19700	0.5	2	0	305	0.3	0	115000	0.2	22.9
SK-110	0.12	14900	2.5	3	0	276	0.2	0	126000	0	18.1
SK-111	0.12	30700	4.6	4	0	181	0.5	0.1	10200	0	27.2
SK-112	0.48	13700	7.5	6	0	213	0.5	0.1	11400	0.1	14.1
SK-113	0.36	13400	10.6	4	0	95	0.4	0.1	42200	9.7	21.9
SK-114	0.72	15700	9.3	6	0	121	0.4	0	2120	0.6	17.7
SK-115	0.16	14200	4.1	2	0	119	0.3	0	3710	0.4	14.4
SK-116	0.14	13000	8.4	2	0	89.5	0.2	0	38300	0.2	13.4
SK-117	0.09	11100	11.8	3	0	80.4	0.4	0	275000	0.3	15.4
SK-118	0.45	13000	121	12	0	54	0.5	0	231000	1.3	19.9
SK-119	0.18	13200	56.4	17	0	57.9	0.5	0	245000	0.5	23.9
SK-120	1.57	17000	100	33	0	67	0.6	0	236000	1.3	27
SK-121	8.92	9460	345	37	0	2050	0.4	0	217000	69.6	25.4
SK-122	3.62	10700	110	56	0	320	0.4	0	225000	25.6	19

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ррт	ррт	ррт	ppb	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	<i>IC3M</i>	FA3	IC3M	IC3E	IC3E	IC3M	IC3E	IC3M	IC3M
SK-123	4.94	10900	56.1	30	0	2390	0.4	0	210000	20.5	19.6
SK-124	1.24	30200	25.4	11	0	1690	0.6	0.1	67400	4.7	35.1
SK-125	2.35	29700	53.4	9	0	675	0.5	0	85100	1.6	34.3
SK-126	0.27	41400	19.1	5	0	343	1.1	0.7	166000	0.4	42
SK-127	0.5	52200	10	3	0	334	1.5	0.5	137000	0.2	44.8
SK-128	0.51	34700	22	9	0	1780	1	0.3	98300	20.4	33.2
SK-129	0.18	41900	22.9	5	0	474	1	0.8	151000	0.2	41.4
SK-130	0.12	23700	7.2	0	0	88.3	0.6	0.1	230000	0.4	32
SK-131	0.29	40800	8.6	1	0	179	1.5	0.2	160000	0.2	45.2
SK-132	0.16	39700	5.8	1	0	184	1	0.2	152000	1	45.9
SK-133	0.13	37200	2.5	2	0	551	1.5	0.1	167000	0.1	73.6
SK-134	0.79	21300	5.6	0	0	217	0.4	0.1	9140	0.2	26.5
SK-135	0.1	16700	8	5	0	80	0.3	0.1	3870	0	11.9
SK-136	0.27	13200	29.5	6	0	124	0.9	0.1	2970	0	16.8
SK-137	0.13	24800	5.9	4	0	229	0.5	0.1	4970	0	19.9
SK-138	0.23	14200	4.6	8	0	105	0.4	0.2	6950	0.3	16.6
SK-139	0.33	36200	2.5	2	0	1610	0.7	0	23800	0	41.3
SK-140	0.37	21900	6.2	4	0	167	0.5	0	47700	0.3	28.5
SK-141	1.1	18100	23.9	6	0	927	0.8	0	288000	18.3	30.5
SK-142	1.97	20400	268	26	0	593	0.7	0	233000	2	29
SK-143	7.89	15900	72.3	19	0	143	0.6	0	195000	14.1	22.9
SK-144	1.44	4560	73	24	0	481	0	0	266000	2.9	15.1
SK-145	20.8	8140	179	34	0	2060	0.3	0	230000	79.9	17.3
SK-146	16.4	8280	142	79	0	2050	0.3	0	225000	57.4	18.1
SK-147	39.1	3780	156	75	0	867	0.2	0	213000	157	13.8
SK-148	12	9100	189	137	0	1490	0.4	0	166000	71.4	8
SK-149	0.39	15400	20.2	7	0	585	0.4	0	126000	0.3	20.3
SK-150	0.09	6090	8.8	2	0	66.6	0.5	0	286000	0.4	12.9
SK-151	0.13	20500	6.4	2	0	117	0.8	0	238000	0.4	33
SK-152	0.03	14800	1.3	2	0	163	0	0	49300	0.2	20
SK-153	0.09	7200	0.6	1	0	74.5	0	0	260000	0	10.2
SK-154	0.27	8770	9.3	8	0	95.9	0.2	0	3090	0	10.9
SK-155	0.15	12300	5	2	0	135	0	0	4510	0.1	16.9
SK-156	0.5	14700	6.7	5	0	326	0.4	0	9690	0.1	16.1
SK-157	0.2	13300	4.8	3	0	99.7	0.3	0.1	1580	0	18.3
SK-158	1.29	10400	10.1	3	0	76.7	0.2	0	20600	4.2	11.4
SK-159	0.22	18800	9.8	6	0	132	0.5	0.2	4770	0	20.2
SK-160	0.42	8430	15.2	4	0	72.6	0.4	0	257000	1	16
SK-161	16.6	16900	34.7	10	0	209	0.7	0	215000	2.1	25.2
SK-162	2.4	7820	45.8	11	0	1380	0.4	0	259000	27.9	12.5
SK-103	8.89	9210	/5./	17	0	1900	0.5	0	207000	23	18.8
SK-104	45.5	6210 5700	290	30	0	1260	0.3	01	130000	219	0.0
SK-105	40.0	17100	207	190	0	1200	0.2	0.1	116000	29.5	15.2
SK-100	30.2	0200	54.8	34	0	1320	0.0	0.1	243000	222	15.2
SK-169	12.0	10200	70.0	26	0	1200	0.4	0	245000	191	17.1
SK-160	21	13800	10.9	10	0	1300	0.5	0	201000	7.2	21.1
SK-105	1 3/	25200	42.6	9	0	527	0.5	0	170000	21.1	30.6
SK-170 SK-171	0.24	16700	40.3	16	0	84.8	0.0	0	136000	0.3	18.0
SK-172	0.27	21300	263	548	0	131	0.5	01	89300	0.0	19.2
SK-173	0.23	30200	200	12	0	131	0.8	0.1	183000	0.3	35.4
SK-174	0.20	32200	12.7	3	0	52.6	0.5	0.1	195000	1.7	26.5
SK-175	0.34	24800	8.2	4	0	73.1	1	0.1	202000	0.2	30.8
SK-176	0.09	14200	9.3	2	0	56.2	1.1	0.3	222000	0.1	36.4
SK-177	0.08	28000	13.4	1	0	49.5	0.5	0.1	220000	1.1	47.6
SK-178	0.82	14600	22.1	5	0	86.4	0.8	0	241000	0.9	26.6
SK-179	2.63	15600		41	0	2260	0.8	0	199000	20	26.5
SK-180	2.46	8720	158	58	0	99.7	0.5	0	235000	15.9	17.1
SK-181	26.8	8300	172	51	0	1850	0.4	0	185000	150	17.8
SK-182	7.25	10300	204	37	0	1640	0.6	0	215000	109	14.9
SK-183	0.4	64000	17.8	2	0	411	1.4	0.2	73100	0.2	58.1

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ррт	ррт	ррт	ppb	ppm	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	ІС3М	FA3	IC3M	IC3E	IC3E	ІСЗМ	IC3E	ІСЗМ	ІС3М
SK-184	1.19	13500	15.4	21	0	74.6	0.5	0.2	213000	1.4	34.1
SK-185	0.53	8330	17.1	9	0	102	0.5	0	265000	3.5	28.6
SK-186	0.17	9320	10.1	4	0	68.5	0.4	0.1	17800	0.4	15.4
SK-187	0.14	30200	3.1	3	0	198	1.1	0.2	5420	0	18.3
SK-188	2.46	17600	7.1	5	0	227	0.5	0.1	18400	1.4	24.1
SK-189	0.58	16400	16.4	3	0	126	0.7	0	157000	0.4	22.4
SK-190	2.07	10900	26.3	6	0	91.6	0.6	0	256000	1.1	26.2
SK-191	0.95	17900	26	17	0	70.4	0.9	0	201000	4.6	26.4
SK-192	50.5	11200	94.1	16	0	1050	0.4	0	178000	29	15.5
SK-193	39.2	6610	194	56	0	1360	0.4	0	243000	14.3	13.2
SK-194	4.21	12700	53.2	30	0	838	0.6	0	262000	12.3	22.7
SK-195	33.1	9250	251	56	0	579	0.4	0	105000	914	11.4
SK-196	1	10200	21.7	5	0	1080	0.3	0	204000	14.9	16.1
SK-197	0.77	13400	16.5	5	0	135	0.3	0	189000	36.5	19.8
SK-198	0.12	16700	24.7	7	0	178	0.4	0	136000	0.5	21
SK-199	0.09	18900	46.8	12	0	139	0.4	0	147000	0.3	31.4
SK-200	0.14	42700	223	89	0	99.1	0.8	0.1	96400	0.2	56.2
SK-201	1.32	16000	58.1	31	0	291	0.4	0	163000	6.8	18.4
SK-202	0.4	23300	84.9	35	0	87.5	0.4	0.1	89900	0.7	36.6
SK-203	0.09	31400	11.8	2	0	34.8	0.7	0.1	206000	0.6	35
SK-204	0.17	70300	5.9	0	0	119	2.4	0.1	65500	0	84.8
SK-205	0.15	31600	11.1	0	0	52.3	0.9	0.1	210000	1.7	28.7
SK-206	1.78	11700	188	27	0	525	0.6	0	117000	0.4	18.9
SK-207	0.33	17400	10.6	2	0	142	0.5	0	230000	0.2	28.6
SK-200	0.27	40200	33.5	2	0	209	1.0	0.1	103000	0.0	04.0
SK-209	0.12	38600	250		0	420	6.1	02	116000	10	45.7
SK-210	9.72	22200	230	0	0	1/6	0.1	0.2	153000	0.6	25.1
SK-217	41.2	5100	89.3	11	0	130	1	0	235000	29.8	9.9
SK-212	2.78	7740	57.9	8	0	104	1.5	0	281000	2.4	13.2
SK-214	1.31	13000	34.4	4	0	618	0.4	0	259000	0.9	15.9
SK-215	0.8	14900	29.7	7	0	736	0.5	0	245000	1.6	21
SK-216	0.46	17300	21.4	17	0	152	0.4	0.1	171000	0.7	21.4
SK-217	0.03	13600	2.3	0	0	207	0.3	0	114000	0.1	14.1
SK-218	0.05	16100	12.1	4	0	103	0.3	0	131000	0.2	17.1
SK-219	0.02	22300	9.6	2	0	91.1	0.4	0.1	135000	0.2	27.7
SK-220	0.6	52600	134	24	0	325	0.9	0.1	109000	5.7	59.8
SK-221	0.73	32500	84.6	29	0	229	0.8	0.1	109000	0.5	40.7
SK-222	1.72	12100	108	42	0	612	0.4	0	169000	40.7	22.9
SK-223	0.11	20100	27.5	6	0	88.8	0.5	0	102000	0.2	36.3
SK-224	0.12	32400	12.1	1	0	600	0.9	0.1	174000	0.6	34.9
SK-225	0.04	7310	12.5	4	0	320	0	0	252000	0.3	16.3
SK-226	0.14	56200	12	2	0	828	1.8	0.1	99800	0.1	63.9
SK-227	0.1	21900	10.3	3	0	1220	1	0	116000	1.9	41.3
SK-228	0.1	26000	11.3	10	0	1060	1.1	0	109000	0.2	29.2
SK-229	0.39	14100	35.2	31	0	143	0.6	0	228000	0.8	25.4
SK-230	0.89	10200	137	4	0	246	0.5	0	248000	10.7	22.4
SK-231	0.41	9600	133	9	0	118	2	0	252000	1.1	19.7
SK-232	0.3	42900	10.1	2	0	174	0.8	0	138000	1.4	28.3
SK-233	0.23	15100	23.3	5	0	207	0.6	0	210000	0.0	19.2
SK-235	0.52	14200	23.4	5	0	02.1 295	0.4	0	234000	0.7	12.1
SK-236	0.22	35300	14.9	3	0	163	0.4	01	108000	0.4	34.5
SK-237	0.00	23200	3.6	2	0	158	0.5	0.1	139000	0.1	32.7
SK-238	0.13	20200	2.0	2	0	443	0.5	0.1	99100	0.2	36.2
SK-239	0.89	26900	5.3	3	0	851	0.7	0.1	122000	0.2	48.6
SK-240	0.22	22000	7.2	1	0	243	0.4	0.1	152000	0.3	32.1
SK-241	0.68	42400	103	27	0	363	1.1	0.1	92400	12.6	54.6
SK-242	1.26	38600	51.6	16	0	272	0.9	0	111000	0.7	50.1
SK-243	0.3	70900	222	49	0	392	1.2	0	38000	0.1	79.8
SK-244	0.16	22000	149	21	0	139	0.6	0	105000	0.3	35.5

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ррт	ррт	ррт	ppb	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	IC3M	FA3	IC3M	IC3E	IC3E	IC3M	IC3E	IC3M	IC3M
SK-245	0.94	26800	154	67	0	131	0.9	0.1	121000	0.3	41.6
SK-246	0.11	37200	8.6	2	0	1840	1.4	0.1	146000	1.1	47.5
SK-247	0.05	7170	20	10	0	36.2	0.2	0	262000	0.5	9.8
SK-248	0.23	36400	13.1	8	0	1360	1.5	0	81000	0.2	44.2
SK-249	0.12	16400	5	4	0	711	0.8	0.9	126000	0.2	32.7
SK-250	0.26	46700	4.8	2	0	406	1.2	0.3	96200	0.2	38.8
SK-251	0.57	6740	164	12	0	1230	1.1	0	255000	1.7	19.5
SK-252	0.43	10600	35.7	20	0	44.2	0.4	0	229000	0.3	23.3
SK-253	0.26	9300	29.3	8	0	561	0.5	0	253000	0.6	16.4
SK-254	0.09	20700	20.5	7	0	108	0.5	0.1	109000	0.6	19.6
SK-255	0.11	19800	16.1	6	0	132	0.4	0	119000	0.3	14.7
SK-256	0.11	26600	5.8	2	0	299	0.5	0.1	97600	0.2	30.7
SK-257	0.08	24800	4.9	1	0	309	0.4	0.1	92000	0.2	24.1
SK-258	2.24	29600	51.6	24	0	439	1.1	0.1	148000	31.4	39.8
SK-259	0.17	52800	8.9	0	0	334	1.7	0.1	117000	0.3	53
SK-260	0.36	37500	19.3	3	0	263	1	0.1	145000	2.9	53.2
SK-261	0.16	35600	10.5	0	0	278	1	0.1	161000	0.4	39.7
SK-262	9.55	11200	36.6	5	0	1830	0.3	0	179000	182	11.1
SK-263	0.32	13400	38.6	11	0	1530	0.5	0	208000	10	20.7
SK-264	0.96	31200	44.7	6	0	181	1	0	134000	4.9	34.9
SK-265	0.72	29500	37.1	13	0	88.9	1.1	0	198000	2.3	35.7
SK-266	0.23	26500	19	5	0	146	0.7	0	110000	0.2	41.9
SK-267	0.26	53600	6.5	3	0	460	0.8	0.3	112000	0	48.2
SK-268	0.21	22800	6.6	2	0	571	0.8	0	214000	0	31.3
SK-269	0.27	55900	42.5	10	0	1240	1.7	0	75800	0.1	68.4
SK-270	2.84	23600	113	84	0	292	0.7	0	180000	46.9	28.8
SK-271	0.16	40200	53.3	0	0	313	1.7	0	165000	0.2	36
SK-272	0.43	3690	80.4	6	0	321	1	0	279000	1.3	10.8
SK-273	0.29	14500	27.1	2	0	76.2	0.6	0	274000	0.4	20.5
SK-274	0.07	23300	5.9	0	0	152	0.4	0	95800	0.2	16.5
SK-275	0.08	20100	6.3	0	0	136	0.4	0	147000	0.2	18.7
SK-276	0.12	39600	4.8	0	0	189	1.1	0	141000	0.2	44.7
SK-277	0.15	85500	1.7	0	0	512	2.1	0	40300	0.4	84.9
SK-278	0.11	36800	3	13	0	248	0.9	0	114000	0.2	40.7
SK-279	0.08	30000	6.2	0	0	147	0.6	0.1	111000	0.2	24.8
SK-280	0.1	28400	4.2	0	0	205	0.6	0	134000	0.2	38.2
SK-281	0.22	55700	22.3	0	0	391	1.3	0.1	111000	0.2	68.9
SK-282	0.18	33900	23.6	0	0	159	1.1	0	178000	0.4	43.6
SK-283	0.33	28300	22.5	0	0	145	1	0	191000	0.2	40.4
SK-284	47.5	16000	35.1	3	0	1150	0.5	0	127000	482	9.5
SK-285	0.61	22700	90.7	6	0	103	0.9	0	217000	1.2	32.2
SK-286	11	8720	99.3	14	0	446	0.3	0	215000	112	13.6
SK-287	0.18	25900	23.7	4	0	97.8	0.7	0	81800	0.4	32.4
SK-288	0.14	38700	4.8	0	0	168	0.7	0.1	189000	0.2	32.0
SK-289	0.07	0000	0.1	0	0	203	0.0	0	269000	0.2	21.7
SK-290	0.34	9310	12.2	0	0	404	1.3	0	207000	0.9	10.4
SK-291	0.09	23900	12.3	15	0	604	0.0	0	103000	0.2	29.4
SK-292	0.10	83300	90.2	0	0	377	1.7	0	41300	01	70.4
SK-293	0.14	15800	110	0	0	206	<u> </u>	01	201000	1 1	19.4 22 F
SK-294	0.55	12200	102	5	0	290	1.1	0.1	201000	0.6	14.2
SK-296	0.00	27300	22.0	1	0	30.2 128	0.0	01	95500	0.0	22.0
SK-297	0.00	21300	23.9 1 <i>1</i>	0	0	120	1.9	0.1	100000	0.2	20.9 16.0
SK-298	0.19	17000	52	0	0	125	0.4	0.3	1/7000	0.4	-+0.9 26 1
SK-299	0.09	18600	10	0	0	02	0.4	0	151000	0.2	10.0
SK-300	0.15	18000	24	0	0	340	0.5	0	121000	0.2	17.0
SK-301	0.03	28900	5.5	0	0	156	0.4	0	137000	0.2	33.1
SK-302	0.12	28800	<u> </u>	10	0	250	0.0	0.1	121000	0.2	30
SK-303	0.17	74900	21	0	0	643	1.5	0.1	30300	0.2	72 7
SK-304	0.1	72200	10.4	1	0	1100	1.2	0	58800	0.2	86.4
SK-305	0.06	22000	15.1	0	0	95.5	0.7	0	137000	0.1	33.6
	-					-					-

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ррт	ррт	ррт	ppb	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	ІС3М	FA3	IC3M	IC3E	IC3E	ІСЗМ	IC3E	ІСЗМ	ІС3М
SK-306	0.12	30800	11.4	0	0	128	0.8	0	128000	0.3	40.3
SK-307	0.14	22700	13.9	0	0	176	0.7	0	169000	0.3	38.6
SK-308	0.4	15200	29.5	5	0	90.1	0.5	0	274000	0.6	27.7
SK-309	0.48	18800	43.3	0	0	89.6	0.6	0	208000	0.3	31
SK-310	1.31	12400	41.6	7	0	60.9	0.4	0	253000	1.6	19.7
SK-311	0.09	25400	35.2	4	0	111	0.5	0.1	93800	0.2	28
SK-312	0.08	26600	1.7	0	0	235	0.5	0.2	202000	0.1	33.6
SK-313	0.25	13100	203	5	0	170	2.8	0	119000	0.9	14.6
SK-314	0.35	43700	13.8	0	0	404	1.4	0.2	162000	3	42.2
SK-315	0.11	20900	12	0	0	93.9	0.7	0.1	145000	0.3	24.6
SK-316	0.19	56000	6.8	2	0	395	1.8	0	90700	0.9	51.2
SK-317	0.21	75300	18.4	4	0	243	2.2	0	17200	0.2	64.6
SK-318	0.28	69500	18.3	0	0	317	1.9	0.3	97000	0.2	59.1
SK-319	0.14	39000	15.3	3	0	160	1.2	0.2	140000	0.7	34.7
SK-320	0.14	19300	7.6	2	0	76.7	0.6	0	150000	0.3	23.1
SK-321	0.07	16600	4.6	3	0	81.2	0.5	0	160000	0.2	22.2
SK-322	0.15	18700	22.3	22	0	115	0.5	0	113000	0.3	15.3
SK-323	0.16	23700	35.5	11	0	105	0.6	0	136000	0.2	19.8
SK-324	0.06	14400	11.4	8	0	78.9	0.4	0	166000	0.2	15.1
SK-325	0.09	27200	6.9	10	0	130	0.7	0.1	96800	0.2	23.6
SK-326	0.08	36700	5	5	0	316	1	0	135000	0.1	46.4
SK-327	0.06	42800	5.9	3	0	257	0.8	0	83700	0.1	37.4
SK-328	0.07	26200	10.1	2	0	148	0.6	0.1	90800	0.3	21.4
SK-329	0.12	25300	16.1	5	0	100	0.7	0.1	140000	0.2	30.5
SK-330	0.16	27000	6.4	8	0	151	0.8	0.1	138000	0.2	34
SK-331	0.1	19700	16.9	3	0	114	0.6	0	92300	0.3	18.1
SK-332	0.29	41700	5.9	0	0	106	1.2	0.1	127000	0	39.1
SN-333	0.28	10800	16.2	1	0	02.0	0.4	0	254000	0.1	22.3
SN-334	0.6	26800	05.Z	0	0	93.8	0.9	0	151000	0.2	38
SN-330	0.15	59400	11.2	7	0	201	1.5	0.5	97100	0.2	55.0 40.2
SK-227	2.24	55000	4.9	0	0	468	1.5	0.1	140000	1.0	40.3
SK-337	0.49	54400	28.4	3/	0	200	1.0	0.2	118000	23	47
SK-330	0.40	29900	4.7	9	0	235	0.9	0.1	123000	0.1	32.2
SK-340	0.05	14200	6.1	0	0	77	0.0	0.1	1120000	0.4	15.6
SK-341	36.8	42800	40.7	0	0	94.9	1.2	0.1	69600	620	28.8
SK-342	4.34	41900	45.1	22	0	523	1.4	0.1	129000	143	45.2
SK-343	0.21	58800	10	32	0	1520	1.8	0.2	140000	1.4	52.8
SK-344	0.62	19500	60	0	0	106	0.7	0.1	72300	0.2	16.5
SK-345	0.48	18000	28.1	4	0	113	0.6	0	124000	0.6	18.9
SK-346	0.43	38900	11.1	2	0	438	1.1	0	103000	0.2	48.8
SK-347	0.09	49300	7	0	0	143	1.1	0	95100	0.1	29.5
SK-348	0.08	23300	12.4	3	0	97.8	0.7	0	122000	0.2	20.4
SK-349	0.05	20300	9.2	12	0	218	0.5	0	110000	0.2	17.6
SK-350	0.13	20600	6.8	3	0	126	0.6	0.1	85100	0.2	17.4
SK-351	0.06	17900	4	0	0	142	0.5	0	150000	0.3	16.8
SK-352	0.12	31500	7	1	0	1060	0.7	0.3	115000	0.2	24.4
SK-353	0.59	76300	4.3	1	0	649	2	0	41200	0	78
SK-354	7.58	40900	58.8	9	0	1320	1.4	0.1	142000	56.5	44.4
SK-355	0.71	58300	15.9	0	0	444	1.8	0.2	120000	0.6	51.2
SK-356	1.73	36700	37.1	4	0	672	1.3	0.2	109000	0.7	49
SK-357	0.35	22600	16.9	10	0	100	0.7	0.2	136000	0.2	24.5
XX20	192	6610	421	525	0	136	0.4	0.2	70100	152	6.5
SK-359	2	64500	57.7	0	0	975	1.4	0	83400	0.6	83.6
SK-360	1.29	41000	96.3	2	0	695	1.1	0	92500	0.2	32.2
SK-361	0.53	29500	18	0	0	187	0.7	0	224000	0.3	46.1
SK-362	0.57	32100	34.2	0	0	2140	0.9	0.1	144000	0.2	34.9
SK-363	1.06	76100	14.7	0	0	482	2	0	46900	0.1	59.9
SK-364	2.11	77000	45.9	0	0	886	1.9	0.2	66100	0.2	60
SK-365	0.72	74900	27	0	0	704	1.8	0	36500	0.3	59.7
SK-366	0.71	57000	16.5	0	0	1350	1.5	0	113000	0.3	50.5

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ррт	ррт	ррт	ppb	ppm	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	IC3M	FA3	IC3M	IC3E	IC3E	IC3M	IC3E	IC3M	IC3M
SK-367	0.91	54200	19.3	0	0	1550	1.5	0	98600	0.4	42.3
SK-368	1.05	91700	7.9	0	0	584	1.6	0	64500	0	50
SK-369	0.77	66200	23	0	0	632	1.2	0.1	93400	0.1	44.4
SK-370	0.5	69000	12.6	2	0	1000	2.1	0.1	96700	0.3	62
SK-371	6.69	42800	25.9	0	0	816	1.4	0	90300	78.7	36.6
SK-372	0.97	65700	12.4	0	0	572	2	0.2	110000	1	52.2
SK-373	1.12	27800	15.9	0	0	1220	1	0.2	176000	0.5	45.2
SK-374	8.96	59200	96.7	1	0	9220	1.9	0.2	93400	0.9	54.9
SK-375	0.42	25500	19.5	3	0	263	0.6	0.1	137000	0.6	24.5
SK-376	0.2	22000	12	2	0	122	0.7	0.1	94000	0.3	19
SK-377	0.4	23700	11.1	5	0	375	0.6	0.1	102000	0.3	18.4
SK-378	0.2	20900	11.9	5	0	114	0.6	0	82400	0.2	16.9
SK-379	0.73	22200	15.2	5	0	247	0.8	0.1	132000	0.2	22.2
SK-380	0.27	24800	27.4	16	0	134	0.7	0.1	107000	0.2	26.9
SK-381	0.21	21100	17.7	4	0	128	0.7	0.1	98800	0.1	20.3
SK-382	0.21	28400	5.3	0	0	161	0.7	0.1	79900	0.2	22
SK-383	0.71	82600	5.4	0	0	699	2.3	0	35600	0	77.6
SK-384	1.07	62900	25.7	0	0	1290	1.6	0	84500	0.3	50.4
SK-385	1.5	74200	17.5	0	0	3340	1.9	0	74800	0.4	53.3
SK-386	0.95	76900	7.4	0	0	525	1.2	0	68500	0.1	45.5
SK-387	21.1	38700	41.7	8	0	2130	1.3	0	146000	223	35.5
SK-388	0.42	45500	12.5	0	0	2260	1.6	0	103000	0.5	46.4
SK-389	0.49	24200	20.6	6	0	1180	1.1	0	109000	0.8	35.9
SK-390	0.53	55800	8.8	0	0	520	1.8	0.2	128000	0.9	45.9
SK-391	0.74	69100	46.4	6	0	589	1.8	0	100000	0.1	66.1
SK-392	0.61	32100	7	0	0	83.1	0.9	0	207000	0	31.7
SK-393	0.54	36900	17	0	0	1770	1.4	0	190000	0.3	45.8
SK-394	0.65	20900	21.6	0	0	1630	0.5	0	47300	0.1	15.3
SK-395	0.6	34500	31.6	0	0	947	1	0	81500	0.9	18
SK-396	4.31	40600	123	0	0	1690	1.1	0.2	168000	0.2	38.2
SK-397	0.35	19500	25.2	0	0	1190	0.6	0.5	158000	0.3	21
SK-398	0.5	63200	26.5	0	0	465	1.4	0	80000	0.2	44.8
SK-399	0.36	75400	14.7	0	0	1310	2.2	0	56300	0.1	64.8
SK-400	0.36	75800	19.3	0	0	667	2.4	0	34100	0.3	59.3
SK-401	0.73	72600	7.7	1	0	564	1.9	0	44300	0.3	50.1
SK-402	1.14	49600	91.4	0	0	2350	1.7	0	117000	1	43.7
SK-403	0.23	64900	10.6	1	0	399	1.8	0	97500	0.6	50.8
SK-404	0.19	62600	6.4	0	0	438	2	0.2	117000	0.2	52
SK-405	0.12	29800	7.4	0	0	974	1.3	0	93800	0.4	26.3
SK-406	0.27	58900	7	0	0	687	1.9	0	136000	0.9	51.6
SK-407	0.28	56300	6.1	0	0	342	1.8	0.1	142000	0.3	53.8
SK-408	0.47	66800	49.5	22	0	950	1.8	0	117000	0.2	65.6
SK-409	0.61	23200	11.3	0	0	857	0.7	0.1	95000	0.2	27.1
SK-410	0.06	19500	4.7	3	0	104	0.5	0	137000	0.3	14.1
SK-411	0.16	21400	3.1	2	0	282	0.5	0	69100	0.3	9
SK-412	0.1	27000	19.2	7	0	138	0.8	0	86100	0.1	18.6
SK-413	0.12	23100	18.6	7	0	192	0.6	0.1	75600	0.2	17
SK-414	0.73	87000	8.6	1	0	488	2.3	0	28100	0.1	56
SK-415	0.68	76000	64.5	2	0	546	1.9	0.1	71600	0.9	44.9
SK-416	0.18	53700	8.4	1	0	613	1.6	0.1	147000	0.4	49.3
SK-417	0.8	24600	32.1	41	0	675	1	0	41000	0.3	17.5
SK-418	0.29	54100	14.6	1	0	1430	1.8	0.2	120000	1	55.8
SK-419	0.36	20200	24.7	9	0	1070	1.1	0	79300	0.6	28.2
SK-420	0.45	47400	10	0	0	287	1.5	0.1	164000	0.5	41.2
SK-421	0.29	48800	39.8	2	0	2210	1.8	0.1	149000	0.3	52.1
SK-422	0.51	51900	50.3	0	0	2010	1.1	0	114000	1.5	77
SK-423	0.65	24500	9.2	1	0	760	0.7	0	90100	0.3	25.5
SK-424	2.85	47300	132	2	0	383	1	0	84800	0.2	29.2
SK-425	3.4	44500	81.3	0	0	213	0.9	0	147000	0.3	21.5
SK-426	0.98	79000	37.8	8	0	548	2	0.2	47300	0.2	57.6
SK-427	0.35	81100	10.9	0	0	401	2.5	0.3	35400	0.3	63
KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
---------------	------	-------	-------------	--------	------	------	------	------	--------	------	------
UNITS	ррт	ррт	ррт	ppb	ppm	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	ІСЗМ	FA3	IC3M	IC3E	IC3E	ІСЗМ	IC3E	ІСЗМ	ІСЗМ
SK-428	0.53	71300	16.8	0	0	3240	1.8	0	80400	0.3	51.9
SK-429	0.83	92700	7.6	0	0	610	2.2	0.1	30000	0.3	58
SK-430	0.45	71900	14.6	0	0	1680	1.7	0.1	100000	0.5	49.2
SK-431	0.83	69100	7.7	0	0	454	1.8	0	96300	0.4	49.5
SK-432	0.25	49900	16.5	3	0	1740	1.4	0	117000	0.3	45.3
SK-433	0.58	18700	14.3	90	0	255	0.9	0	59400	0.3	23.8
SK-434	I/S	I/S	I/S	4	I/S	I/S	I/S	I/S	I/S	I/S	I/S
SK-435	0.31	71600	40.7	4	0	611	1.9	0	23000	0	60.7
SK-436	0.34	74900	57	17	0	707	1.5	0	54700	0.1	65
SK-437	0.24	10500	8.2	2	0	90.6	0.2	0	67800	0.2	9.3
SK-438	0.12	22200	8.5	0	0	150	0.6	0	118000	0.2	10
SK-439	0.11	16600	4.1	0	0	123	0.5	0	111000	0.2	12.5
SK-440	0.11	21000	5	1	0	145	0.7	0	75000	0.2	10.1
SK-441	0.22	26900	15.7	4	0	133	0.8	0.1	126000	0.2	14.4
SK-442	1.04	63300	15.7	0	0	241	2.2	0.2	130000	0.4	56.8
SK-443	0.15	37600	33.8	1	0	1670	1.2	0	197000	0.3	53.5
SK-444	0.96	75900	32	3	0	2270	1.3	0	90400	0.3	90.5
SK-445	0.57	47900	7.2	0	0	1100	1	0	71000	0.2	40.2
SK-446	0.73	62800	24.4	0	0	1310	1.2	0	110000	0.5	61.4
SK-447	0.3	30900	20.4	0	0	362	0.6	0	171000	0.3	35.7
SK-448	0.21	25500	14.4	0	0	349	0.9	0	230000	0.3	36.7
SK-449	0.62	80400	12.9	0	0	433	1.7	0	89900	0.2	51.4
SK-450	0.51	36000	26.1	0	0	645	0.9	0.1	203000	1.3	27.1
SK-451	0.41	32800	13.2	1	0	272	1	0.1	214000	0.6	29.1
SK-452	0.83	62400	25.4	4	0	831	1.6	0	140000	0.5	53
SK-453	0.79	66000	18.9	2	0	224	1.3	0	144000	0.2	56.5
SK-454	0.39	40100	8	3	0	365	0.7	0	223000	0.1	36.4
SK-455	0.21	17000	5.6	1	0	1330	0.4	0	208000	0.3	26.9
SK-450	0.4	28200	10.5	0	0	739	0.8	0.1	189000	0.6	27.7
SK-437	0.74	80200	0.8	15	0	784	1.5	0	208000	0.1	42.2
SK-450	4.27	21400	59.5	15	0	1200	0.5	02	102000	2.2	20
SK-459	0.32	20800	22.2	4 8	0	84.4	0.9	0.3	84000	0.1	21.8
SK-400	0.02	20000	92.2 8.0	0	0	115	0.5	0.1	77000	0.1	11.0
SK-467	0.14	23800	0.3	2	0	102	0.0	01	73600	0.1	14.3
SK-463	0.25	23500	14.1	1	0	412	0.7	0.2	194000	0.5	24.8
SK-464	0.88	66300	5.8	0	0	459	2.2	0.1	78500	1	64.9
SK-465	0.24	35500	18.4	1	0	1060	1.2	0.1	201000	0.3	39.5
SK-466	0.77	63800	36.7	0	0	1150	1.4	0	93900	0.2	71.1
SK-467	0.53	45900	13.5	0	0	663	0.7	0	108000	0.4	48.6
SK-468	0.73	68700	10.9	0	0	1180	1.2	0	75400	0.7	62.9
SK-469	14.4	49000	33.8	3	0	482	1	0.1	82300	10.8	37.9
SK-470	0.61	56500	42.4	3	0	456	1	0	109000	2.4	33.7
SK-471	0.52	68300	13	1	0	120	1	0	64100	0.1	21.4
SK-472	0.55	49200	13.8	5	0	396	1.3	0.2	159000	2.2	36.3
SK-473	0.93	75400	10.9	0	0	358	1.9	0.2	44000	0.2	62.3
SK-474	0.77	78700	18.9	1	0	805	1.5	0.1	73400	0.1	48.4
SK-475	1.23	74800	15.4	1	0	1220	1.6	0.1	102000	0.2	54.8
SK-476	0.46	45400	17.4	0	0	184	1	0	162000	0.3	46
SK-477	0.34	63800	7.5	0	0	1530	1.8	0.1	105000	0.5	51.3
SK-478	0.84	76300	12	1	0	386	1.6	0.3	73600	0.1	60.1
SK-479	0.54	56900	9.5	5	0	366	1.1	0	128000	0.1	31.2
SK-480	0.93	74000	61.6	81	0	454	1.7	0.6	46900	0	62.3
SK-481	0.29	8510	8.4	28	0	66.5	0.4	0	141000	0.2	14.4
SK-482	0.23	26000	4.6	1	0	129	0.6	0.1	78400	0.1	15.3
SK-483	0.09	19700	3	3	0	90.5	0.4	0	62800	0.3	11.9
SK-484	0.79	84500	4.5	0	0	523	2.3	0	41100	0.2	77.5
SK-485	0.21	64000	9.2	0	0	501	2	0.2	90000	0.5	53.8
SK-486	0.19	59700	13	0	0	351	1.7	0.1	130000	0.5	48.6
SK-487	0.15	59800	5.6	0	0	934	1.7	0	145000	0.5	54.6
SK-488	0.18	44900	10.6	0	0	920	1.1	0	115000	0.5	42.9

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ppm	ррт	ррт	ppb	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	IC3M	IC3E	IC3M	FA3	IC3M	IC3E	IC3E	IC3M	IC3E	IC3M	IC3M
SK-489	0.27	50800	28	2	0	1320	1.1	0.2	93900	0.4	67.4
SK-490	0.2	38900	40.2	2	0	1930	1.1	0	139000	0.3	70.2
SK-491	0.51	93700	9.5	0	0	964	1.6	0	78000	0.2	99
SK-492	0.12	49700	23.1	1	0	665	1.4	0.1	152000	0.3	40.7
SK-493	0.13	66900	6.5	0	0	518	1.8	0.1	129000	0.2	54.7
SK-494	0.19	75100	5.6	0	0	771	1.8	0.1	87900	0.2	55.2
SK-495	0.32	79700	10.1	2	0	699	1.7	0	90900	0.3	57
SK-496	0.43	82600	12.5	0	0	365	1.9	0	52900	0.1	52.8
SK-497	0.34	72100	10.8	0	0	360	1.4	0	80000	0.4	43.9
SK-498	0.34	82000	6.6	0	0	275	1.5	0	79600	0.2	55.2
SK-499	0.23	66600	18.1	0	0	369	1.2	0	118000	0.2	47.9
SK-500	0.16	36100	12	0	0	1110	0.8	0.2	185000	0.3	47.8
SK-501	0.07	24400	5.6	4	0	1010	0.8	0.5	107000	0.1	25.8
SK-502	0.48	18600	17.5	88	0	912	0.6	0.1	195000	0.4	63.2
SK-503	0.11	23400	11.3	3	0	124	0.6	0	85600	0.2	23.6
SK-504	0.15	26800	3.9	0	0	194	0.6	0.5	48400	0.1	18.1
SK-505	0.11	39600	7.3	0	0	208	1	0.1	95700	0.1	42
SK-506	0.12	61500	12.1	0	0	436	1.7	0.1	123000	0.4	53.1
SK-507	0.16	55700	6.7	0	0	399	1.4	0.1	134000	0.3	46.3
SK-508	0.13	57800	7.9	9	0	339	1.6	0.2	127000	0.6	48.1
SK-509	0.13	57700	6.5	0	0	476	1.6	0.2	144000	0.4	49.8
SK-510	0.49	64000	30.7	0	0	736	1.5	0.1	78100	0.3	72.9
SK-511	0.76	69200	141	0	0	844	1.1	0.2	84500	0.5	86
SK-512	0.41	76900	26.6	0	0	1410	1.2	0	86800	0.5	91.5
SK-513	0.34	73800	27.2	0	0	294	1.3	0	89900	0.4	53.3
SK-514	0.33	77900	49.8	0	0	414	1.4	0	37700	0.1	43.8
SK-515	0.13	31200	4.8	2	0	216	0.8	0	118000	0.2	32.3
SK-516	0.21	59400	40.4	0	0	267	1.1	0	85200	0.2	33.2
SK-517	0.13	43700	7.5	1	0	317	1	0	113000	0.3	36.4
SK-518	0.47	77200	15.1	1	0	409	1.7	0	86000	0.1	56.3
SK-519	0.45	84700	10.7	1	0	456	1.7	0	45200	0.2	54.1
SK-520	0.14	34100	7.7	0	0	339	0.7	0	176000	0.2	50.6
SK-521	0.37	42500	14.8	0	0	1590	1	0	197000	0.5	51.1
SK-522	0.33	59300	28	92	0	277	1.4	0.1	75700	0.1	63.7
SK-523	0.26	44500	26.5	78	0	575	1.1	0.2	111000	0.2	43.2
SK-524	0.22	44400	4.5	5	0	256	0.8	0	128000	0.2	41.3
SK-525	0.16	35100	10.9	8	0	477	1	0	135000	0.2	65.6
SK-526	0.14	24900	5.3	3	0	1210	0.8	0	139000	0.2	56.9
SK-527	0.12	31900	3.8	0	0	1530	1.1	0	121000	0.3	40.7
SK-528	0.12	22500	18.2	1	0	160	0.7	0.1	53200	0.2	15.4
SK-529	0.07	30400	9.5	1	0	125	0.7	0	67100	0.1	23
SK-530	0.09	42100	11	2	0	253	1	0	49100	0	39.8
SK-031	0.07	29900	10.5	0	0	439	0.8	0.1	126000	0.3	42.2
SK-332	0.25	45000	31.9	145	0	040 405	1.2	0	100000	0.2	50.Z
SK-033	0.07	30100	10.3	140	0	405	1.2	0.2	112000	0.3	33.7
SK-334	0.27	45000	0.0	10	0	1230	1.1	0.2	70600	0.2	40.0
SK-535	0.04	20900	7.0	17	0	1270	0.5	0	103000	0.2	62.0
SK-530	0.10	50000	102	4	0	1/40	0.0	0	111000	0.1	63.8
SK-537	0.35	65600	15.6	2	0	149	1.4	0	00600	0	03.0
SK-530	0.00	21600	5.3	0	0	/21	0.7	0	51400	0.2	51.6
SK-539 SK-540	0.03	21000 8530	8.8	3	0	28/	0.7	0	1/5000	0.2	64.5
SK-541	0.02	20100	11 1	3	0	204	0.4	01	20200	0.2	63.0
SK-547	0.0	21700	16.3	1	0	5/3	0.6	0.1	65700	0.2	54.2
SK-543	0.24	21900	10.5	1	0	326	0.5	0.1	99000	0.2	40
SK-544	0.13	56900	9.6	0	0	675	1	0.0	139000	0.5	46.4
SK-545	0.10	37200	10.3	0	0	378	0.8	0.2	105000	0.7	53.4
SK-546	0.45	65600	34.1	0	0	1720	1.4	0.2	70500	0.7	61.8
SK-547	0.62	73300	27.7	0	0	677	1.3	0.1	78400	0.2	63.2
SK-548	0.38	46200	60.9	1	0	922	0.8	0	92300	0.2	56.9
SK-549	0.3	39600	79.5	0	0	471	1.3	0	134000	0.5	55.5
	0.0			-				-		0.0	20.0

KAVOSH KANSAR	Ag	AI	As	Au	В	Ba	Be	Bi	Ca	Cd	Ce
UNITS	ррт	ррт	ррт	ppb	ppm	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.01	10	0.5	1	0.5	0.2	0.2	0.1	10	0.1	0.5
METHOD	ІСЗМ	IC3E	IC3M	FA3	IC3M	IC3E	IC3E	IC3M	IC3E	ІСЗМ	IC3M
SK-550	0.42	70100	14.5	0	0	400	1.1	0	76100	0.3	84.2
SK-551	0.18	33000	24.3	7	0	2250	1.6	0	134000	0.3	34.4
SK-552	0.09	29400	8.5	2	0	380	1	0	144000	0.2	31.5
SK-553	0.06	17500	16.9	2	0	307	0.6	0	199000	0.2	22
SK-554	0.00	22100	18.4	0	0	670	0.0	0	85800	0.2	47.9
SK-555	0.56	45400	29.6	1	0	434	0.1	0.2	109000	0.2	40.9
SK-556	0.00	62100	1/	0	0	1630	1.1	0.2	122000	0.2	46.3
SK-550	0.38	77100	12.1	1	0	700	1.1	0.4	56400	0.2	53
SK-558	0.00	44200	0.1	5	0	201	0.8	0.4	23000	0.2	53.8
SK-550	0.47	30000	18	3	0	523	0.0	0.1	131000	0.2	67.4
SK-559	0.3	50900	14.6	14	0	320	1.2	0.2	117000	0.2	56.2
SK-500	0.31	49000	14.0	7	0	000	1.0	0.1	122000	0.3	52.2
SK-501	0.23	40000	11.0	0	0	1020	1.2	0.2	122000	0.2	04.5
SK-502	0.15	43000	17.0	0	0	1930	1.2	0	02000	0.1	76.0
SK-503	0.29	53000	17.2	4	0	000	1.9	0	93900	0.1	70.3
SK-304	0.12	39600	0.9	1 5	0	990	1.0	0	145000	0.2	03.2
SK-505	0.32	74600	15.8	5	0	1380	1.8	0	63900	0.1	72.3
SK-566	0.2	40400	24.6	1	0	3/7	1	0.2	32500	0	74.3
SK-567	0.16	65100	6.1	0	0	613	1.9	0	44500	0	64.7
SK-568	0.76	19800	26.5	0	0	353	0.5	0	103000	0.2	12.7
SK-569	0.45	33000	18	0	0	97.2	0.6	0.1	53400	0	54.9
SK-570	0.45	49500	11	0	0	275	0.9	0.2	17800	0	53.4
SK-571	0.49	65500	7.3	0	0	232	1.1	0	21600	0	54.2
SK-572	0.33	42100	12.2	1	0	129	0.6	0	45200	0	51.1
SK-573	0.27	34500	18.4	0	0	135	0.5	0	60400	0	47.8
SK-574	0.29	70600	28.4	6	0	696	2.1	0	22400	0	79.7
SK-575	0.21	50600	14.6	3	0	1160	1.1	0	44100	0	71.2
SK-576	0.23	73500	11.2	0	0	666	2.2	0	44600	0.1	67.2
SK-577	0.33	74400	23.9	6	0	674	1.9	0	31500	0	68.7
SK-578	0.41	73200	45.6	4	0	701	2.9	0	61000	0	74.4
SK-579	0.17	68200	24.3	3	0	602	1.2	0	22300	0	75
SK-580	0.29	50800	26.4	0	0	2890	1.2	0.5	118000	0.4	52.8
SK-581	0.11	56300	8.1	2	0	782	1.4	0.1	104000	0.4	47
SK-582	0.28	24100	24.3	15	0	504	0.6	0.1	46800	0	61.8
SK-583	0.26	36000	12.6	2	0	253	0.5	0.1	179000	0.8	35.7
SK-584	0.72	64900	20.8	1	0	2570	1.3	0.1	84900	0.3	69.8
SK-585	0.34	25500	7.8	2	0	214	0.4	0.1	143000	0.4	40.9
SK-586	0.18	10700	12.5	2	0	86.1	0.3	0.1	90000	0.2	26.6
SK-587	0.19	16200	11.6	15	0	156	0.4	0.1	63600	0.2	40.4
SK-588	0.18	30900	13	2	0	553	0.7	0.1	132000	0.2	32.2
SK-589	0.16	30500	32.7	14	0	408	0.8	0	153000	0.2	62.2
SK-590	0.47	55600	51.9	0	0	255	0.9	0	65200	0.2	29.5
SK-591	0.33	24900	8.9	0	0	121	0.4	0	62100	0.2	27.2
SK-592	0.45	70800	14.2	0	0	439	1.4	0.1	66100	0.2	69
SK-593	0.33	34300	16.5	0	0	1420	0.5	0.5	151000	0.2	73.5
SK-594	0.38	45800	11.6	0	0	2270	1	0	180000	0.2	65.9
SK-595	0.62	83800	6.8	0	0	502	1.6	0	47500	0	51.7
SK-596	0.58	82100	4.7	1	0	652	1.4	0	35500	0	53.7
SK-597	0.64	90200	7.1	1	0	454	1.6	0.1	34000	0	56.2
SK-598	0.45	57500	8.2	2	0	519	1.3	0.2	111000	0.2	60.6
SK-599	0.25	32400	13.9	10	0	2770	0.9	0.1	168000	0.5	59
SK-600	0.18	71500	19.6	2	0	729	2	0	28500	0.1	69.5
SK-601	0.13	71500	24	2	0	767	1.4	0	44900	0	69.1
SK-602	0.16	73700	34.7	5	0	940	2	0	46000	0	62.5
SK-603	0.22	69800	53.8	8	0	836	1.7	0	38700	0.1	72.7
SK-604	0.2	67800	5.1	0	0	715	2.3	0	23300	0	64.3
SK-605	0.22	74600	26.9	2	0	1000	1.5	0	59300	0	67.9
		•		•			•	•		•	

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ppm	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	ІСЗМ	IC3E	ІСЗМ	IC3E	IC3E	IC3E	IC3E	IC3E
SK-1	14.7	26	3.4	31.4	55600	0	8920	20	29.5	10900	4880
SK-2	12	22	1.4	34	27700	0	13000	23	20.4	11700	913
SK-3	13.1	17	2.6	49.8	22100	0	10400	13	19	10800	1110
SK-4	2.6	4	0.2	39.3	7160	0	814	0	3.4	1020	386
SK-5	6.7	4	0.5	53	14900	0	1790	0	5.4	2870	937
SK-6	6.7	10	0.9	45.9	11700	0	3270	0	9.1	2380	538
SK-7	13.1	28	1.1	78.1	24000	0	5230	0	18.4	11600	1590
SK-8	10.3	10	2.7	18.9	30000	0	9520	18	28.5	12400	2460
SK-9	10.4	12	1.3	10.8	29700	0	13700	27	18.7	9950	690
SK-10	7.8	9	1.1	23.8	36900	0	8700	17	14	9240	2990
SK-11	17.9	14	1.2	45	55700	0	8910	34	16.3	21300	3350
SK-12	12.2	16	1.8	16.1	37800	0	14100	30	19.9	11600	1610
SK-13	28.1	33	2.1	171	43200	0	12800	30	28.7	16600	2530
SK-14	25.3	41	2.4	22.5	46100	0	21400	31	25.3	12800	1360
SK-15	5.4	15	1.9	15.1	26500	0	8480	14	12.7	6310	1940
SK-16	5.4	10	1.2	7.3	29300	0	5700	13	5.2	7220	2340
SK-17	10.7	30	1	28.4	34400	0	5110	17	15.5	11000	3020
SK-18	5.9	11	0.9	7.5	45900	0	6240	14	17.1	12000	3490
SK-19	27.7	175	2.5	49.5	51400	0	18300	28	42	29500	1340
SK-20	14.7	46	3.5	18	49100	0	19000	33	21.5	13600	2410
SK-21	6.5	13	1.7	14	38800	0	9710	20	13.5	9050	3050
SK-22	8.6	10	2.9	13.5	38600	0	14400	37	17.1	8210	3240
SK-23	16.6	80	1.4	36.4	31000	0	7200	17	42	13500	861
SK-24	4.4	8	2.1	15.5	14800	0	5060	11	13.5	5340	874
SK-20	11.1	93	1.2	43.8	17800	0	2860	0	24.1	38200	1680
SK-20	9.5	26	0.0	55.3	18300	0	7590	11	20.0	6160	752
SK-22	11.9	56		40.8	27000	0	6240	12	21.3	0100	853
SK-20	53	10	1.1	52.9	12100	0	4640	0	10.7	2390	338
SK-30	6.1	10	1.0	21.5	14100	0	4580	0	15.6	4450	971
SK-31	8.9	40	1.2	33.7	19500	0	5140	0	12.8	6300	1470
SK-32	8	9	1.3	95.2	51700	0	4060	0	9.7	3390	1880
SK-33	10.1	24	1.3	32.4	29000	0	8380	14	15.4	10300	1480
SK-34	11.2	17	1.7	29.9	37900	0	13800	30	18.6	13900	1860
SK-35	9.2	33	1.5	17.7	42700	0	11600	27	21.3	14000	2350
SK-36	12.6	37	2.8	13.6	42400	0	21200	33	33.5	12900	1090
SK-37	11.3	32	3	48.7	38300	0	30100	31	26.4	10100	1440
SK-38	11.4	28	1.3	78.7	49600	0	8980	21	16.4	17000	4500
SK-39	3.4	8	2	60.1	29600	0	7330	13	2.9	9050	2950
SK-40	4	4	1.9	5.9	24900	0	7630	19	10.8	6410	1200
SK-41	6.1	3	2.6	4.6	41900	0	24300	35	16	10100	1870
SK-42	7	5	3	3.7	40200	0	19000	36	19.6	10700	1040
SK-43	10.9	31	2.7	22.7	50900	0	17800	35	34.2	23800	1390
SK-44	13.4	36	2.8	28.3	60600	0	16500	37	31	17200	2650
SK-45	3.1	6	0.2	8	8220	0	2900	0	7.1	3100	967
SK-46	2.4	7	0.2	8.8	9440	0	2250	0	6.5	3950	680
SK-4/	3	6	0.2	5.9	14300	0	2510	0	5.7	3750	884
SN-48	3.4 5.0	102	0	12.8	13600	0	1910	12	14.4	4650	1250
SK-50	0.0 1 3	18	0.0	40.1 28.1	13200	0	2880	12	21.5	2400	1440
SK-50	4.3	10	0.5	20.1	17700	0	2000	0	10.2	4960	1240
SK-52	4.0	20	0.3	23.2	20200	0	3530	0	12.6	3480	1780
SK-53	30	23	0.4	20	20200	0	4490	0	12.0	20900	1880
SK-54	4.6	31	0.8	42	18300	0	3970	0	10.8	4710	531
SK-55	3	17	0.6	10.5	21700	0	5220	0	9.1	5230	1750
SK-56	9.8	40	0.5	57.4	24700	0	3830	0	8.2	3540	1780
SK-57	10.4	95	2.8	22.2	55000	0	15800	15	32.9	24100	1750
SK-58	4.6	27	0.8	8.9	51600	0	13300	32	23	12100	2830
SK-59	11	50	1.1	65.3	51600	0	15400	27	31.8	19200	1730
SK-60	3.4	20	0.6	7.5	53700	0	9210	24	15.2	10700	4050
SK-61	4.3	33	0.8	6.7	55400	0	6740	23	17.3	10400	3960

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ррт	ррт	ррт	ррт	ppm	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
SK-62	5.2	63	0.7	8	37800	0	5760	16	26.1	18900	1450
SK-63	2.6	33	1.8	2.8	47600	0	11100	23	9.5	9900	5460
SK-64	4.1	23	2	3.3	42600	0	18500	36	18.5	11900	1320
SK-65	4.2	16	1.6	3.2	51100	0	21900	48	20.8	13000	1400
SK-66	3.4	10	1.3	3.6	48700	0	23600	48	28.5	18800	1190
SK-67	1.2	3	0.2	3.3	9900	0	2230	0	3.7	2970	987
SK-68	1.5	9	1	2.2	22600	0	3160	0	8.2	4700	775
SK-69	1.6	18	0.5	2.1	13100	0	2810	0	7	10700	837
SK-70	3	122	0.6	6.6	19000	0	3390	0	16.6	27300	883
SK-71	3.3	97	1	11.2	20900	0	3520	0	24.2	10600	2640
SK-72	3.9	95	1.6	14.8	24500	0	6330	11	28.8	9690	2190
SK-73	1.5	19	0.3	8.2	12600	0	1870	0	12.5	2750	1010
SK-74	1.6	162	1	13.6	22900	0	3390	0	13.7	16200	641
SK-75	2.9	124	1.3	20.9	32500	0	3640	0	14.3	7330	673
SK-76	2	34	2.4	30	21600	0	7210	12	13.5	3820	288
SK-77	3.3	33	1.5	17.5	20300	0	4380	0	16.9	5190	1030
SK-78	2.7	20	1.4	17	19300	0	5350	0	16.4	3570	633
SK-79	5.2	97	2.2	22	36800	0	5320	26	47.9	10700	790
SK-80	2.5	42	0.9	8.4	19700	0	4180	13	14	7320	1060
SK-81	2.4	24	1.6	22.7	27400	0	9100	21	17.6	5890	1080
SK-82	3	16	1.5	10.5	33500	0	6880	16	13.4	14200	1980
SK-83	1.4	15	1	6	17600	0	3140	0	8	7510	1920
SK-84	4	105	0.9	19.5	42400	0	12400	22	26.9	18500	1640
SK-85	2.6	39	3	27.7	31400	0	15700	24	34.9	14800	1120
SN-80	2.5	30	2.2	30	28600	0	15500	23	29.8	12800	1220
SK-07	2.1	33	1.3	5.2 10.4	39200	0	9600	29	20.0	0000	2160
SN-00	5.7	40	1.1	27.4	26500	0	5200	23	22.4	12700	1250
SK-00	0.2 Q	32 18	1.4	27.4	23400	0	6070	10	10.3	13/00	2080
SK-90	16.7	109	1.0	32.2	51900	0	6300	22	37	29300	2000
SK-92	9	100	1.2	12.5	43100	0	23700	35	23.8	12300	1560
SK-93	8.7	21	5.5	8	79500	0	15500	32	33.8	10700	7000
SK-94	8.8	99	1.1	20.9	21200	0	4040	13	14.5	11800	1330
SK-95	9.1	47	1.7	21.5	20700	0	4620	0	18.3	14800	1850
SK-96	5.6	20	3.2	56.4	37000	0	8930	22	10.2	2790	209
SK-97	2.5	9	2	35.7	10900	0	6080	0	6.7	1760	96
SK-98	2.2	8	0.8	24	10800	0	3480	0	7.1	1560	284
SK-99	8	8	1.7	36.5	12300	0	6220	0	10.1	3080	940
SK-100	6.9	8	1.8	33.4	12300	0	6410	0	9.9	2800	829
SK-101	9.5	26	2	35.9	29000	0	5110	17	27.6	6450	1000
SK-102	3.7	3	2.8	30.7	20600	0	10100	18	15.9	5900	1720
SK-103	3.4	6	2	12.5	25100	0	4710	0	5.8	7250	2030
SK-104	4.3	11	3.1	100	15300	0	7190	11	8.1	4000	1130
SK-105	4.5	4	1.8	9.3	18700	0	4570	0	9.7	6460	920
SK-106	1.9	6	0.7	21.3	14100	0	2050	0	5.5	6860	924
SK-107	2.6	4	0.2	20.3	23500	0	952	0	5.1	17300	1980
SK-108	3	11	0.9	5.3	11200	0	2720	0	8.3	3790	1020
SK-109	11.1	90	1.2	9.5	16700	0	2960	0	15.7	59700	1430
SK-110	4.5	20	0.6	12.3	11200	0	2220	0	9.1	13300	1020
SK-111	8.7	21	1.4	44.4	20800	0	5250	11	20	7840	765
SK-112	2.7	8	1.8	29.1	12300	0	5850	0	6.7	2000	237
SK-113	5.7	7	1.3	39.2	13900	0	4430	0	8.4	2450	970
SK-114	4.5	11	1.1	43	16100	0	4570	0	10	2560	728
SK-115	5.7	6	1.1	36.8	12000	0	4470	0	8.8	2560	867
SK-116	6	6	0.8	34.6	15400	0	3090	0	7.2	4230	1290
SK-117	1.5	2	1.9	8.1	14000	0	4840	0	3.3	3470	1300
SK-118	1.8	/ 7	2	4.9	10000	0	5550	0	9.3	2070	1000
SK-119	1.ð 24	10	2	0.3	10900	0	5870	10	5.2	3870	1010
SK-120	3.4 20.2	12	2.D	10.1 EA 4	01001	0	0000	11	1.2	1010	1400
SK-121	30.3	0	1.0	20.9	9480	0	4390	- 11	0.2	1010	1640
GA-122	0.3	0	1.9	20.0	9000	U U	+110	U	9.5	2310	1000

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ppm	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
SK-123	5.1	40	1.4	18	10300	0	4070	0	8	2990	1240
SK-124	12.5	35	1.1	39.8	28100	0	7340	16	20.1	10600	1150
SK-125	5.3	51	1	35.2	18000	0	7170	15	25.5	3600	1100
SK-126	4.8	17	1.4	13.6	21000	0	11700	18	22.1	7450	844
SK-127	6.7	24	1.7	9.2	26900	0	12600	20	19.8	10200	945
SK-128	4.4	15	1.1	12.6	18400	0	8560	15	19.4	7690	834
SK-129	5.5	16	1.4	17.8	19800	0	10100	17	28.5	8370	883
SK-130	2.7	12	0.8	6.1	22100	0	4720	13	15.2	8980	1350
SK-131	6.6	13	3.1	15	59800	0	8840	21	16.4	8150	3170
SK-132	5.7	22	3.1	18.6	20300	0	12200	19	14.3	8090	973
SK-133	10.5	18	3.8	26.4	45600	0	7500	34	15.3	10000	6820
SK-134	16.0	14	1	A1 5	16800	0	/590	11	15.7	5670	1260
SK-134	7.1	11	0.0	50.7	12600	0	3440	0	8.7	2050	348
SK-135	8.4	8	0.3	54.9	15500	0	3760	0	8.7	2050	460
SK-130	0.4	22	0.9	20.7	22400	0	5700	0	14.5	4700	907
SK-137	9.3	23	1.1	50.7	22400	0	4020	0	14.0	4790	1010
SK-130	0.9	1	1	50.5	12600	0	4920	0	0.1	2110	1210
SK-139	15.6	42	1.1	70.3	30400	0	9550	17	30.7	11500	1050
SK-140	9.7	32	1.2	32.7	21800	0	5230	11	15.8	6970	850
SK-141	3.8	11	3	14.7	20600	0	7060	12	6.1	5030	1630
SK-142	15.2	21	2.4	61.1	24200	0	7290	13	12.7	7690	1890
SK-143	11.4	13	2	28.7	12900	0	7080	0	11.2	5700	1180
SK-144	4.7	2	0.7	22.1	7990	0	2120	0	4.4	2360	2310
SK-145	11.6	5	1.2	53	8970	0	3670	0	9.3	2000	1470
SK-146	7.4	6	1.1	37.7	7460	0	3850	0	10.3	2240	1190
SK-147	7.2	2	0.5	288	7550	0	1580	0	16.7	1570	1360
SK-148	11.3	7	1.2	414	10100	0	4460	0	22.8	3110	1160
SK-149	15.8	186	1.4	15.3	30100	0	4670	0	17.6	28500	1860
SK-150	2.1	0	0.9	4.2	4770	0	3010	0	3.2	2300	885
SK-151	3	0	1.9	26.4	14000	0	7220	14	10.7	2690	1470
SK-152	7.2	4	0.3	25.3	26800	0	1040	0	6.2	18500	1460
SK-153	1.7	0	0.9	1.9	11900	0	2440	0	4.1	3490	507
SK-154	2.9	6	0.6	28	8020	0	3200	0	4.4	1060	181
SK-155	5.9	6	0.5	46.8	10900	0	2030	0	9.5	1640	742
SK-156	4.3	9	1.1	48.8	17700	0	4810	0	9.6	1970	547
SK-157	2.8	6	1	23.5	9580	0	4940	0	6.7	1870	316
SK-158	6.6	6	0.6	45.8	16500	0	2660	0	6	2380	971
SK-159	9.5	14	1.2	58.6	20100	0	5500	0	10.5	3080	550
SK-160	2.2	3	1.3	3.4	15600	0	3950	0	3.1	3840	1080
SK-161	2.8	11	2.2	9.1	11800	0	7140	11	7	6210	974
SK-162	4.5	3	1.3	17.1	8640	0	4100	0	3.9	5050	1250
SK-163	7	10	1.3	38.7	13500	0	5640	0	9.6	6020	2040
SK-164	11.3	7	1.1	138	10600	0	3570	0	23.8	1770	1060
SK-165	10.7	6	0.8	232	8970	0	2190	0	22.3	1390	1080
SK-166	14.9	15	1.9	74.8	12300	0	7760	0	19.7	2080	1120
SK-167	5.6	6	1.5	32	7280	0	4760	0	5.4	2630	1310
SK-168	5.7	6	1.6	22.4	8650	0	5670	0	14.1	4940	1390
SK-169	4.4	14	1.5	14.5	32400	0	5130	0	10.1	5170	2720
SK-170	4.9	11	1	9.5	16200	0	6630	13	10.7	5040	1190
SK-171	3.2	17	0.8	7.2	23100	0	5080	0	14.3	4530	2050
SK-172	4.2	25	0.9	130	26900	0	5820	0	18.3	2850	1140
SK-173	6.8	18	0.8	25.5	31100	0	6280	15	20.4	12200	2030
SK-174	3.8	15	0.5	32.7	14500	0	4590	11	19.8	8210	413
SK-175	6.8	14	2	6	50100	0	5450	13	12.6	6810	3340
SK-176	9.3	7	1	3.2	51800	0	3910	15	12.3	7130	4330
SK-177	8.6	66	1.1	16	30500	0	2790	22	15.8	12600	2410
SK-178	5	32	2.4	8.6	13500	0	5980	12	5	5190	1180
SK-179	5.2	48	2.3	29.3	17000	0	5710	13	7.7	3030	1370
SK-180	5.7	30	1.5	23.8	8780	0	3500	0	4.7	2370	1080
SK-181	9.1	35	1.3	60.5	9930	0	3780	0	14.5	2200	1380
SK-182	8.2	17	1.9	30.6	16000	0	5440	0	10.1	2870	1650
SK-183	5.5	21	4.1	6.9	19200	0	20500	26	31	6350	635

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ррт	ррт	ррт	ррт	ppm	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
SK-184	5.5	16	1.8	45.2	15200	0	4190	15	11.7	7040	2170
SK-185	4	19	1.3	28.3	13900	0	3130	14	5.1	4500	1840
SK-186	7.6	25	0.9	39.4	24600	0	3460	0	9	3150	990
SK-187	6.9	27	2.8	31.2	19700	0	8460	0	16.2	6100	822
SK-188	5.8	24	1.7	35.2	14000	0	6290	0	10.7	3000	737
SK-189	8	29	2.3	21	15400	0	4300	0	9.9	3380	1020
SK-190	6.7	42	2.7	27.5	12700	0	4050	12	4.5	3460	2260
SK-191	5.5	41	3.4	16.6	9730	0	5720	12	6.2	3260	1060
SK-192	9	29	2.1	57.8	20000	0	4200	0	15.3	10700	2140
SK-193	13.4	12	1.3	102	10000	0	3370	0	7.8	2320	1650
SK-194	4.9	21	2.2	19.3	10100	0	4500	0	3.7	3840	1250
SK-195	23.8	13	1.2	106	10700	0.23	3530	0	25.1	2380	1240
SK-196	3	22	1.1	4	10100	0	3040	0	6	5550	959
SK-197	4.7	23	1.3	8	11800	0	3330	0	4.4	4250	896
SK-198	4.8	80	1.5	24.4	11400	0	3840	0	8.8	7970	897
SK-199	4.6	23	1.3	24.8	17000	0	4060	13	10	8690	1110
SK-200	6.8	18	1.5	36.6	27300	0	4880	26	22.8	18000	1260
SK-201	2.9	24	1	20.9	6990	0	3990	0	24.8	2100	585
SK-202	6.5	17	1.3	38.8	23100	0	5150	17	23.5	13000	1420
SK-203	5	28	0.9	7.2	22600	0	4240	15	11	8990	1400
SK-204	7.4	10	5.7	3	39000	0	9920	38	15.4	9960	2510
SK-205	4.2	35	1.2	5	16900	0	7760	13	17.5	8130	561
SK-206	10.8	43	1.6	125	38600	0	4820	0	35.6	7220	2890
SK-207	2.6	12	2.2	3.5	16500	0	3690	12	17.7	2610	1610
SK-208	6.1	18	7	95.1	25600	0	9210	30	23.6	3420	1120
SK-209	4.7	20	3	14.6	22800	0	6570	21	23.9	6360	964
SK-210	8.5	25	2.7	66.3	57000	0	7320	17	26.3	4380	907
SK-211	4.8	20	1.9	36.8	15300	0	4780	12	14.2	2650	1140
SK-212	7.2	10	1.1	72.3	10600	0	2460	0	20.7	2300	1020
SK-213	3.3	15	1.7	18.6	13100	0	3100	0	2.5	3930	1100
SK-214	3.5	20	1.7	5.7	13300	0	3980	0	3.2	4130	605
SK-215	3.9	23	1.6	7.6	13900	0	3900	0	5.6	8060	1100
SK-216	4.3	41	1.5	196	9370	0	3790	0	7.9	3580	762
SK-217	3.9	30	1	6.1	10700	0	3320	0	5	6000	619
SK-218	3.7	38	1.1	13.1	15600	0	3410	0	10.5	1880	932
SK-219	3.9	27	1.4	21.1	11000	0	3770	11	6.7	4560	542
SK-220	7.9	31	1.6	23.9	24700	0	6460	28	19.2	9620	1040
SK-221	7.3	25	2	12.7	22500	0	8050	18	12.8	12700	850
SK-222	6.1	11	1.5	21	13200	0.07	6300	13	15.5	7420	1420
SK-223	6.5	12	1.6	7.9	18300	0	7690	16	10.8	17900	1020
SK-224	4.9	15	1	13.6	27700	0	6720	16	15	7360	1700
SK-225	3.1	0	0.4	7.2	10500	0	1280	0	5.6	7100	1480
SK-226	6.1	11	3.3	7.4	29800	0	11000	30	17.6	8830	1070
SK-227	6.5	4	4.3	12	24500	0	10500	20	25.9	9860	2420
SK-228	7.7	8	3.5	36.9	36400	0	6870	12	57.6	6810	2260
SK-229	3.5	12	2	23.3	18600	0	5580	11	6.6	4630	1410
SK-230	11	6	1.2	334	21000	0	4520	10	5.5	7760	1900
SK-231	4.4	7	1.9	52.2	30100	0	4770	0	4.3	3750	1520
SK-232	12.5	20	3.9	25.1	31300	0	8800	13	24.9	13200	986
SK-233	2.9	11	2	5.8	11300	0	5380	0	6	4940	614
SK-234	2.6	5	1.1	7	9080	0	4430	0	3.4	3540	719
SK-235	3.6	8	2.1	5.1	10800	0	6540	0	4	5270	384
SK-236	9.6	35	1.9	31	17300	0	8240	15	17.2	10300	606
SK-237	5.1	31	2.1	186	13900	0	6840	15	8	5320	457
SK-238	6.5	17	2.9	16	17000	0	8600	16	19.6	12000	695
SK-239	5	14	2.5	16	15500	0	8700	23	14.2	7130	777
SK-240	5.8	15	1.8	13.9	14100	0	6080	14	8.8	7710	542
SK-241	10	21	3.1	23.7	27200	0	12700	25	17.5	17400	1080
SK-242	6	8	1.5	34.4	25800	0	8720	24	14.3	15000	1250
SK-243	8	5	1.1	7.4	25900	0	12200	40	17.7	8230	861
SK-244	5.7	11	1.7	14.2	19300	0	8540	16	14	4860	1400

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	ІСЗМ	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
SK-245	5.9	16	2.5	21	17800	0	10600	19	11.9	6620	1040
SK-246	6	13	2.4	15	31600	0	9480	22	13.3	9190	2370
SK-247	2.3	2	0.7	9.9	7590	0	3780	0	3.3	3310	1090
SK-248	8.1	4	4.3	1010	32300	0	19300	20	54.7	6700	2010
SK-249	8.7	3	1.9	15	38300	0	5450	13	32.8	8090	3470
SK-250	10.1	36	5.8	26.6	27200	0	11300	19	33.6	19100	470
SK-251	8.8	6	1.5	87	23100	0	3430	0	3.1	4570	2150
SK-252	3.1	15	1.8	13.3	10100	0	5250	11	5.3	2770	1380
SK-253	3.8	7	1.8	9.6	13900	0	4620	0	3.4	3690	1350
SK-254	4.1	27	1.7	16.3	13600	0	6040	11	9.2	2040	766
SK-255	5.1	27	1.4	16	14700	0	5330	0	6.8	4600	576
SK-256	4.9	21	1.8	29.5	13000	0	5790	14	11	5090	517
SK-257	3.8	12	1.3	14.9	12300	0	4750	10	9.2	3630	387
SK-258	7.2	40	2.4	15.2	23200	0.14	7440	19	11.4	9390	1790
SK-259	6.5	20	1.9	14.2	26100	0	16900	25	14.6	8940	1190
SK-260	8.3	16	3.7	19.4	25700	0	12800	25	16.3	11300	999
SK-261	7.7	23	1.7	13.4	21900	0	5790	17	15.1	10200	835
SK-262	5.1	12	0.9	85.1	8430	0.26	4970	0	18.1	3940	908
SK-263	4.9	12	1.4	6.5	14000	0	6080	0	5.3	4660	1530
SK-264	10.7	45	2.1	15.6	67900	0	8720	17	12.9	9870	9600
SK-265	5.1	26	3	8.7	20600	0	6150	17	8.6	6660	1860
SK-266	3.9	15	2.7	8.5	14900	0	7370	19	11.7	3200	917
SK-267	4.8	31	2.3	33.5	14700	0	7190	24	39.1	6100	1100
SK-268	5.2	57	2.5	5.4	18700	0	6370	14	9.1	12600	1780
SK-269	7.6	5	7	12.8	38900	0	18300	34	30.5	7700	2530
SK-270	6.4	14	3	20.3	19800	0	8830	14	17.1	9600	1980
SK-271	10.1	27	4.9	13.7	26000	0	12000	18	17.7	3980	3020
SK-272	6	13	1.1	14.2	29800	0	1930	0	6.4	9520	2960
SK-273	4.2	15	1.9	7.2	9530	0	5620	0	4.4	4580	1070
SK-274	4.7	34	1.5	8.9	11100	0	4180	0	6.9	3180	580
SK-275	4.5	21	1.2	10.7	9750	0	4130	0	4.8	5390	599
SK-276	5.4	19	2.6	16.3	19400	0	13000	23	12.9	4740	1020
SK-277	10.1	7	4	7.4	34800	0	24000	46	28.1	11600	939
SK-278	5.6	12	2.1	18	18100	0	9860	20	17.8	7750	765
SK-279	6.9	61	1.6	13.8	17700	0	5510	13	11.1	6660	814
SK-280	5.2	22	1.8	10.7	15700	0	8180	19	13.3	7020	687
SK-281	9.4	14	2.1	19.9	32500	0	16500	36	21.9	12100	1640
SK-282	7.3	18	2.3	15.7	29700	0	11600	22	16.8	8730	1380
SK-283	6	16	2.7	10.8	20900	0	11900	19	8.2	11000	851
SK-284	8.3	37	1.2	55	20100	0	5860	0	25	3460	1930
SK-285	4.9	20	2.2	9.4	16200	0	10300	15	7.3	10900	1380
SK-286	6	10	0.6	52.5	19900	0	3360	0	16.4	7500	2650
SK-287	8.6	23	1.7	135	25000	0	7010	18	16.5	22200	1780
SK-200	9.9	34	1.5	C.0	21000	0	7000	17	22.0	15900	1330
SK-289	3	10	1.5	4.1	12500	0	7090	12	4.9	5810	1380
SK-290	0.3	0	1.0	30.0	2000	0	4000 5800	15	4.7	1310	3000
SK-291	5.0	40	1.0	10.0	10000	0	25400	61 40	12.3	4000	1210
SK-292	0.9 4.6	5	11.2	6.7	39500	0	28000	40	27.0	6080	2000
SK-295	4.0	26	20	140	47700	0	20000	41	07.0	0000	605
SK-294	0.4	20	3.2	26.7	26200	0	5010	0	6.4	7120	1000
SK-295	9.4	21	2	20.7	12400	0	7030	13	14.3	2100	7/3
SK-297	+.3 7⊿	17	26	23.5	47800	0	11200	25	19.3	9850	3760
SK-298	63	17	1.5	18.0	23700	0	1200	1/	7 1	8820	1180
SK-299	5.5	26	1.0	10.9	20000	0	4330 4730	0	7	3800	1280
SK-300	3.5	14	1.3	9.5	12600	0	5400	0	70	3820	754
SK-301	47	17	3.1	8.0	15900	0	8760	17	0.8	5840	585
SK-302	30	13	1.9	8.9	14600	0	6570	16	12.6	3540	443
SK-303	6.9	7	1.5	15.2	32800	0	26400	.38	10	5930	762
SK-304	8.7	.9	2.5	12.8	34900	0	22400	43	12.9	7710	1290
SK-305	7.2	13	1.9	16.8	26800	0	5950	16	13.4	8360	1680
				-			-			-	-

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	к	La	Li	Mg	Mn
UNITS	ррт	ррт	ррт	ррт	ppm	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
SK-306	3.7	13	2.5	8.8	16200	0	8870	18	14.9	4540	811
SK-307	3.9	14	2.1	14.4	15500	0	6980	16	11.7	8480	912
SK-308	3	10	1.4	6.4	15000	0	6690	12	5	7070	1210
SK-309	4.8	20	1.6	8.4	16500	0	7260	14	7.8	8840	1130
SK-310	3.6	15	1.2	8.3	29600	0	4980	0	4.4	21000	3240
SK-311	5.8	20	2	46.3	21600	0	7440	15	10.2	8160	1250
SK-312	4.1	32	1.8	13.3	14100	0	7720	18	17.6	6920	1390
SK-313	20.2	38	3.1	94.2	42500	0.05	4880	0	13.4	3420	2590
SK-314	5.9	22	2.5	14.7	26000	0.09	15800	22	17	10700	1570
SK-315	2.4	42	2.3	10.3	9040	0	6480	12	8.6	2370	703
SK-316	6.7	19	1.9	45.3	33500	0	18700	28	18.1	12900	1430
SK-317	6.4	12	12.7	11.5	35500	0	32400	37	26.6	5620	1700
SK-318	11.6	40	3	14.5	42800	0	24100	32	21.8	15200	1880
SK-319	5.7	52	2.5	9.9	20900	0	14100	20	15.2	5820	1390
SK-320	3.5	23	1.6	6.2	12500	0	5070	11	14.8	3000	888
SK-321	3.4	26	1.7	5.9	10100	0	5480	11	7.5	5510	832
SK-322	3.9	22	1.7	13.8	14400	0	5410	0	13.9	1610	1290
SK-323	5.7	70	1.8	13.5	13300	0	5800	0	18.2	1890	1430
SK-324	2.1	12	2	6.3	7780	0	5210	0	9	2930	700
SK-325	3.7	16	2.5	13.4	12900	0	8400	12	12.2	1960	660
SK-326	5.9	14	2.4	20.4	23500	0	12700	27	11	2350	1140
SK-327	5.5	9	2.3	9.6	20900	0	12300	22	9.5	3130	885
SK-328	3.2	27	2.1	8.6	13800	0	7920	10	14.5	1810	830
SK-329	4.5	15	2.2	23	18400	0	6970	15	13.6	2000	1830
SK-330	4.1	17	2.5	9.7	15300	0	9010	15	15.6	8640	992
SK-331	3.5	70	1.9	39.0	22700	0	5400 11500	0	10.9	12000	954
SN-332	10.9	10	3.1	47.4	23700	0	5070	21	2 0	11900	955
SK-221	2.0	12	2.4	4.0	21800	0	11300	17	0.2	13400	2140
SK-334	6.7	23 51	2.4	29.5	25600	0	16700	31	37.6	10700	818
SK-336	6.6	19	1.5	12.1	27600	0	14900	22	16.9	14500	879
SK-337	7.1	26	2.5	170	30100	0	14600	26	22.8	12800	1320
SK-338	6.3	17	6.2	15	28400	0	17300	28	20.7	8360	1400
SK-339	5.5	23	3	16.4	18600	0	10300	14	11.8	12200	796
SK-340	1.4	8	1.2	5.9	6620	0	4520	0	9.5	1640	522
SK-341	8.5	52	1.6	114	28800	3.7	14600	12	33.9	12300	1500
SK-342	8.9	24	3.1	35.8	42600	2.2	13700	23	17.4	11500	3460
SK-343	9	30	2	17.6	41300	0	20600	30	20.6	13100	2510
SK-344	12.1	35	1.7	18.6	25500	0	7140	0	13.4	6140	1830
SK-345	5.9	66	1.7	12.2	15500	0	5760	10	13.6	2050	1550
SK-346	7.2	14	3.2	15.3	30200	0	12200	29	19.3	8280	2170
SK-347	12.5	81	3.2	61.4	25900	0	7690	15	45.2	6700	1030
SK-348	5.9	27	2.3	22.5	17000	0	6670	0	17.8	1920	1380
SK-349	2.6	15	1.9	8.6	12000	0	6810	0	14	1960	835
SK-350	5.4	15	1.9	20.1	19500	0	6630	0	12.9	5860	1360
SK-351	3.5	14	1.4	13.6	10600	0	4700	0	7.3	2470	800
SK-352	11.9	30	2.1	74.5	24500	0	7570	13	17.8	6890	1060
SK-353	8.3	12	3.1	12.3	33500	0	32000	42	15.8	3770	696
SK-354	12.5	26	2.6	19.4	42900	0.06	13600	23	17.4	12300	3420
SK-355	11.1	64	3.2	27.4	35500	0	16100	26	21.7	10000	2010
SK-356	7.8	11	1.9	73.7	40800	0	11800	27	16	17400	3590
SK-357	3.9	15	1.6	12.6	12900	0	6220	12	11.2	1920	656
XX20	29.9	15	1	738	16700	0	2960	0	38.8	1900	1250
SK-359	20.4	86	2.7	57.8	43800	0	43800	46	/4.1	13600	1510
SK-360	14.9	34	12.2	14.2	24400	0	26000	14	47.3	11500	1160
SK-307	12.3	21	10.1	36.2	07000	0	00081	25	29.3	9370	1850
SK-302	30.7	29	4.3	127	21000	0	22800	20	32.6	31000	2590
SK-303	10.6	17	7.1	41.8	31000	0	52200	30	03.9 10 E	9000	9/9
SK-304	30.6	40	11.0	150	30200	0	04800 40700	34	48.5	9470	060
SK-366	10.1	65	11.9 Q Q	21.1	32900	0	42100	20 29	44.0 27.0	14000	909 1970
37-300	22.3	00	0.0	10.0	30000	U U	30200	20	51.9	14000	10/0

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
SK-367	22	41	4.9	27.3	46400	0	25800	25	48.5	25700	2080
SK-368	16.5	35	7.8	32.9	52500	0	40700	29	68.4	18900	1410
SK-369	26.7	206	9.2	41.1	56600	0	27100	26	51.1	33000	1850
SK-370	7.3	18	2.5	25.7	35100	0	23100	34	18.9	9000	1750
SK-371	7.6	15	3.9	30.8	30000	0	18000	18	32.1	14300	2550
SK-372	7.9	25	1.6	15.1	33200	0	19600	29	21.6	12300	1400
SK-373	13.9	0	1.6	64.3	26200	0	12000	34	25.6	6310	4540
SK-374	9.4	26	3.1	84.6	43200	0	19400	31	21	14000	2470
SK-375	5.3	17	1.5	13.6	15300	0	4890	11	15.3	3460	967
SK-376	6	20	1.0	9.8	21800	0	7030	0	14.5	1690	1100
SK-377	1.8	20	1.7	9.0	15400	0	4200	0	12.7	1650	852
SK-378	7.1	10	1.0	10.8	24200	0	5070	0	12.7	1/30	823
SK-370	87	17	2.4	16.5	38500	0	7910	12	9.7	3070	2050
SK-380	5.3	14	2.4	73.9	17800	0	7130	14	1/1.2	2130	1340
SK-300	5.3	16	1.0	12.8	16400	0	7460	0	14.3	1700	1390
SK-301	1.0	15	1.9	6.6	17400	0	8900	0	14.7	2010	720
SK-302	4.9	10	2.4	14.2	24200	0	22800	16	12.9	4090	926
SK-303	0.7	27	3.4	14.3 50.5	47400	0	22000	20	23.3	4900	1950
SK-385	21.0 17.2	21	4.0	10	52100	0	28300	23	40.9 51 7	12400	1030
SK-286	25	50/	4.0	19	60900	0	20300	30	20.4	12400	1920
SN-300	30	524 4E	3.7	00	22000	0 12	14000	20	29.4	23400	040
SK-387	0.9	40	3.0	37.1	33000	0.13	11500	19	21.9	14300	2270
SN-388	6.3	18	3.7	15.2	28000	0	20100	23	30.1	8830	2430
SK-389	5.9	8	1.3	11.8	35800	0	9290	16	36	8160	4120
SK-390	0.1	32	1.4	20.3	50000	0	17300	20	18.8	10500	2280
SK-391	13.7	3	4.7	8.1	59900	0	31000	38	34.8	11200	2450
SK-392	4.8	22	7.8	16.9	12800	0	13600	16	14.2	6380	838
SK-393	6.7	18	4	69.7	31000	0	18100	29	29.2	6720	2410
SK-394	6	18	0.6	/	12300	0	12000	0	37.3	1/10	/3/
SK-395	7.8	46	7.9	16.9	23400	0	17600	0	50.2	9470	1180
SK-396	/1.4	37	2.5	1//	30800	0	24800	19	41.9	4200	3210
SK-397	33.8	83	1.4	123	18100	0	10000	11	26.6	15700	1940
SK-398	73.2	51	8.5	292	27700	0	32000	25	58.9	21900	1730
SK-399	9.2	13	11	20.5	26000	0	37300	37	21.8	11500	857
SK-400	8.2	13	9.8	83.6	28300	0	39700	37	36.6	7880	/3/
SK-401	13.5	28	4	132	40600	0	40100	30	58.3	17900	1370
SK-402	41.3	21	3.4	161	54300	0	26900	27	34.5	29000	2910
SK-403	14.3	83	4	13.5	42400	0	21600	30	25.1	15800	1610
SK-404	7.2	26	2.4	12.6	32200	0	23400	30	23.4	11000	1410
SK-405	6.2	8	2	17.7	32100	0	11000	12	63.2	6610	3290
SK-406	7.4	20	2.2	10.9	36200	0	20700	29	19.7	12500	2470
SK-407	6.4	15	2.3	34.4	38400	0	18000	32	16.5	8790	3140
SK-408	14.8	0	4.7	17.1	60300	0	32800	39	26.7	10200	2250
SK-409	5.6	20	1./	19.4	21600	0	6800	14	21	3390	1480
SK-410	2.7	30	1.7	7.2	11500	0	5320	0	13.6	4880	837
SK-411	5.1	12	2	9	15000	0	4440	0	17	1140	689
SK-412	4.1	17	3	9.4	13400	0	10200	0	16.7	1610	809
SK-413	7.1	21	3.2	/1./	17000	0	8620	0	13.4	1570	786
SK-414	18.9	42	3.2	154	53300	0	38000	32	49.9	23800	720
SK-415	38.1	35	5.6	359	59900	0	29900	25	28.6	19300	1130
SK-410	7.3	24	2.7	21.2	29700	0	19300	28	19.3	8530	1900
SK-417	4.3	4	2.3	212	26800	0	13900	0	49.8	11600	1830
SK-418	7.6	15	2.6	24	35400	0	20100	32	27	8690	2220
SK-419	3.1	3	2.3	160	21500	0	8880	13	36.8	28600	2950
SK-420	10.7	25	12.5	25.6	22700	0	19400	21	29.5	8400	1110
SK-421	12.6	18	2.4	141	43300	0	19000	30	19.6	5490	3430
SK-422	30.1	97	1.7	276	45700	0	50700	44	38.4	31700	2860
SK-423	14.2	29	0.9	79.7	21600	0	20600	10	32.5	27000	3050
SK-424	41.9	25	2.3	399	32900	0	34400	15	79.1	3630	1560
SK-425	55	34	2	213	27000	0	34500	11	58.2	6330	947
SK-426	11.4	38	11.8	2110	26100	0	45400	35	51.6	14900	1020
SK-427	7.1	16	9.9	59.5	30000	0	47700	40	32	9510	776

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ррт	ррт	ррт	ррт	ppm	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	ІСЗМ	IC3E	IC3E	IC3E	IC3E	IC3E
SK-428	16.6	37	6.2	67.4	45400	0	38600	31	44.5	15100	1650
SK-429	16.5	31	3.7	154	51800	0	42000	34	56.5	25200	708
SK-430	21.3	35	7.3	92.5	56300	0	30200	28	30.3	14500	1380
SK-431	10.5	33	2.5	2290	37400	0	26600	28	35.2	14300	1250
SK-432	16.9	19	3.6	48.1	39600	0	17800	26	54.7	31200	2580
SK-433	6.6	3	1.9	260	32000	0	11200	0	60.1	21500	3090
SK-434	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S
SK-435	5.7	7	7.7	27.1	31800	0	39200	36	44	5000	1050
SK-436	19.1	106	4.2	20.5	58900	0	42700	40	27	13900	1980
SK-437	3.9	9	0.6	6.5	15600	0	2120	0	12.2	2490	876
SK-438	5.2	11	2	8.4	20600	0	6600	0	17.1	6850	1500
SK-439	3.7	17	1.7	8.1	12300	0	5050	0	12.7	7150	680
SK-440	5.8	14	2.2	9.1	19700	0	6070	0	14.6	2470	792
SK-441	6.5	72	2.7	60.8	15300	0	5100	0	14.9	1830	857
SK-442	10.7	76	8.6	31.8	33700	0	16900	33	24.6	14300	1450
SK-443	8.6	27	3.9	28.9	39100	0.06	12500	23	13.8	5770	2850
SK-444	23.2	160	2.7	84.6	50600	0	39100	56	44.1	28400	2080
SK-445	12.6	72	1.7	48.3	27900	0	20300	18	40.6	10700	1420
SK-446	31.9	84	2.2	32.2	38600	0	46000	36	60	30200	2780
SK-447	8.5	46	0.6	16.6	23900	0	18800	19	58.6	4140	3660
SK-448	5.9	68	2.9	7.4	18900	0	9830	21	22.7	5010	2430
SK-449	21.8	231	8.2	39.1	43900	0	28300	28	29.5	21400	1250
SK-450	/	74	1	11.8	31800	0	10400	13	19.2	9970	1710
SK-451	6.5	113	1.5	8.1	25200	0	7700	16	12.5	9640	2050
SK-452	13.4	69 59	9.4	220	38700	0	26800	30	48.3	7050	2310
SK-453	13.3	00 242	4.0	21.6	35700	0	32100	21	40.0	7250	2700
SK-404	5.6	243	0.0	27.0	2000	0	20200	21	12.0	1210	2/00
SK-455	5.0	90 50	0.9	12.3	33200	0	5160	14	13.0	4030 8130	2410
SK-450 SK-457	10.2	58	11.3	86.8	3/000	0	21200	21	10 1	8900	1090
SK-458	4.2	42	21	105	10600	0	4300	10	39	3520	1790
SK-459	11	51	2.1	9.7	37300	0	6220	16	26.7	7110	2670
SK-460	86	49	1.9	37.1	34500	0	5290	10	12.5	4750	1760
SK-461	5.3	43	2.5	9.2	15300	0	6900	0	12.9	3840	1350
SK-462	5.6	42	2.2	14.5	17000	0	4780	0	16.7	1490	1160
SK-463	5.9	44	2.5	35.1	20400	0	4690	13	12.6	6160	2000
SK-464	6.7	34	4.7	10.6	30300	0	15800	36	20.6	13000	1470
SK-465	5.2	30	2.9	21.2	28800	0	9240	21	12.9	6190	2350
SK-466	27.4	122	10.6	73.9	50500	0	44000	44	41.1	26200	1870
SK-467	28.8	59	0.9	63.5	39100	0	36000	22	46.5	32700	2250
SK-468	13.7	64	2	20.4	36200	0	21400	28	25.3	7530	903
SK-469	15.9	110	4.7	41.5	34500	0	16000	21	43.8	10900	1530
SK-470	23.5	38	1.8	31.7	43300	0	25800	17	52.9	13900	2390
SK-471	41.2	356	8.3	31.3	51600	0	9520	0	42.5	66800	1060
SK-472	6	37	1.8	17.4	26100	0	11800	19	18.4	11200	1290
SK-473	2.8	22	8.8	12.7	20400	0	21800	35	14.2	20300	2890
SK-474	18.5	39	8.9	44.3	45800	0	39100	24	79.3	20900	1480
SK-475	13.4	39	4.9	438	38700	0	28700	28	42.6	11300	2170
SK-476	18.3	86	3.2	12.9	37000	0	23400	25	26.9	22800	3600
SK-477	7.2	32	2.1	9.7	36500	0	14000	27	18.3	11700	3230
SK-478	31	55	6.5	216	46100	0	27300	32	87.6	30100	1240
SK-479	19.5	48	2.2	69.4	36500	0	24500	17	31.8	23000	3190
SK 491	26.7	97	5.8	61	34800	0	∠5600 2040	34	23.1	17500	1050
SK-407	8.3	12	1.1	6	32600	U	3040	U	1.5	47800	4020
SK-402	10	17	4.1	12.0	7620	0	4000	0	17	2200	1230
SK-403	1.9	10	1.7	12.0	25700	0	4000	12	16.2	2230	402
SK-485	0.4	20	4.0 6.1	10.1	27600	0	20000	43 28	28.01	2930	930
SK-486	7.2	23	2.4	13 /	29100	0	18500	20	20.9	9640	1120
SK-487	7 1	23	2.0	69	30000	0	18500	28	17.5	11700	1610
SK-488	9.2	53	2.5	18.9	25400	0	21800	21	37.9	12100	1030
						-					

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
SK-489	24.3	87	2.5	88	44700	0	42200	38	51.4	14700	1820
SK-490	18.2	43	4.5	29.2	30700	0	23100	36	42.1	20000	2230
SK-491	21.6	68	2.5	8.1	50600	0	21300	56	16.1	22000	1450
SK-492	9.1	53	3.5	10.3	29700	0	17400	21	43.5	8770	1750
SK-493	7.8	22	2.5	10.1	31700	0	21400	27	17.4	11100	1160
SK-494	92	32	5.5	18.9	31300	0	28100	29	23.7	12800	1020
SK-495	10.8	31	6.8	17.5	35600	0	34200	29	22.6	8560	1420
SK-496	19.1	39	4.6	27.7	50800	0	30100	28	42.4	13600	976
SK-497	13.5	43	9.1	174	39200	0	25700	23	51.1	11200	1360
SK-108	23.6	266	5.5	285	55800	0	27600	30	53.2	24600	1310
SK-490	23.0	200	5.5	200	40300	0	23000	27	30.2	17800	1010
SK-500	10.0	77	1.0	221	31200	0	18100	26	25.5	15700	3380
SK-500	10.5	14	2.5	17.1	31600	0	7450	14	15.3	27000	2020
SK-507	26	0	2.3	1000	30700	0	10600	37	10.5	68700	4830
SK-502	20	3 12	2.1	1300	22700	0	7010	12	20.5	14400	4030
SK-503	0.0	15	2.1	44.7	16200	0	6440	0	20.5	14400	702
SK-304	4.0	15	2.5	11.2	16200	0	0440	0	19.9	4440	793
SK-505	0.4	14	3.0	20	37300	0	14000	22	10.3	5070	2000
SK-500	0.4	35	2.3	0.7	28200	0	18300	27	21.3	9720	1150
SK-507	7	21	1.5	8.7	25100	0	15600	24	15.5	12500	1080
SK-508	7.5	34	2.1	9.4	27100	0	18100	24	19.5	16000	1240
SK-509	6	27	2.5	4.6	30300	0	14300	24	18.1	11500	1660
SK-510	21.1	97	5.4	49.2	45800	0	36900	39	66	22500	1630
SK-511	70.4	147	3.7	461	53400	0	50100	46	54.3	7510	1970
SK-512	22.9	51	2.8	44.7	48100	0	44300	44	33.2	26500	2190
SK-513	26.8	86	5.7	30.3	54500	0	31200	28	70.6	21100	2100
SK-514	9.3	11	4.2	42.4	27700	0	41600	25	68.4	4750	792
SK-515	5.4	14	2.1	16.1	17400	0	6900	17	18	7210	975
SK-516	14.5	25	9.8	42.4	32700	0	32500	18	18.4	32900	1620
SK-517	7	17	3	20.5	22500	0	20200	19	25.8	8730	1100
SK-518	12.9	28	4.4	38.7	44000	0	31800	30	34.7	7950	1200
SK-519	16.7	35	5	33.6	46900	0	30900	29	51	12500	997
SK-520	10.5	52	1.7	19.5	26900	0	13000	27	42.6	11100	2610
SK-521	13.3	95	3	82.3	28100	0	24900	30	26.2	7210	2820
SK-522	22.9	84	6.8	104	30400	0	27700	33	22.5	23200	1970
SK-523	30.8	32	3.3	280	33400	0	24100	24	24.4	54300	4240
SK-524	19.3	16	5.1	104	36900	0	29000	22	11.1	56900	2630
SK-525	7	4	3.8	12.6	31800	0	11700	36	34.6	24700	2990
SK-526	11.8	3	2	18.3	45100	0	6410	33	30.3	43100	5090
SK-527	8.1	4	3	20.1	28100	0	10300	21	35.8	6340	2560
SK-528	8.1	11	1.9	24.3	22500	0	6070	0	17.5	5110	1840
SK-529	7.5	19	2.6	25.6	26600	0	5320	12	23.4	14300	2270
SK-530	5.2	16	4.4	20.5	19500	0	14000	21	18.4	5860	929
SK-531	9.7	11	2.4	40.9	39600	0	5870	23	29.3	18400	4170
SK-532	18	47	1.6	188	39600	0	23600	30	30.8	29900	3590
SK-533	22.1	68	3.9	288	37000	0	29700	29	23.3	42700	2980
SK-534	15.4	20	5.4	90.2	30600	0	24000	25	26.2	47900	3460
SK-535	11.7	16	1.9	122	20000	0	14800	0	15.3	42200	3290
SK-536	9.5	3	1.7	27.5	50500	0	6780	31	49.4	30300	3190
SK-537	12.7	15	7.5	10	48200	0	27900	31	25	13100	1930
SK-538	9	87	7.7	5	32500	0	28000	40	30.9	8250	1400
SK-539	7.8	33	5.7	38.9	16600	0	5570	13	22.4	7260	2010
SK-540	16.7	25	1.5	13.8	31800	0	2560	18	15.3	21100	3100
SK-541	9.1	19	4.6	22	11400	0	11000	15	12	1640	650
SK-542	7.6	21	4.2	9.3	14100	0	7000	13	12.8	4770	993
SK-543	5.5	28	1.7	7.7	9830	0	6250	0	9	5270	476
SK-544	6.7	29	1.3	14.1	25800	0	15500	23	19.5	13300	1300
SK-545	6.7	24	1.7	12.5	15700	0	8580	14	9.8	6000	507
SK-546	32.3	40	3.9	86.1	36000	0	42600	30	65.3	17300	1560
SK-547	10.4	61	3.8	31.5	36500	0	28800	34	73	10600	1640
SK-548	19.9	47	3.1	40	34300	0	29300	27	64.5	24600	1600
SK-549	33.6	83	3.2	83.3	46000	0	27300	32	42.3	11300	2560

KAVOSH KANSAR	Со	Cr	Cs	Cu	Fe	Hg	К	La	Li	Mg	Mn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.2	2	0.1	0.2	100	0.05	10	10	0.5	10	2
METHOD	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3E	IC3E
SK-550	24.3	66	2.1	40.7	48300	0	31200	38	47.7	16600	1810
SK-551	10.3	41	2.1	28.9	38900	0	11400	16	24.1	19100	2070
SK-552	7.1	26	1.8	18.4	25300	0	8290	15	16.7	11800	1690
SK-553	7.8	24	1 1	14.8	23300	0	3410	10	11.2	15600	1660
SK-554	13.9	15	4.4	21.9	12200	0	13900	12	23.1	7550	834
SK-555	12.8	/8	4.6	165	25300	0	22600	21	38	1/1800	1440
SK-556	18.5	37	3.6	69.3	42400	0	21000	23	21	24200	1760
SK-550	13.3	130	2.0	48.0	44000	0	25300	20	41.5	15500	020
SK-557	15.0	23	2.5	33.5	24600	0	13700	13	17.0	6730	202
SK-550	0.2	23	2.0	47.4	24000	0	12200	17	16.0	0730	1790
SK-559	0.3	169	2.9	47.4	19400	0	13200	25	20.9	9080	1700
SK-500	23.9	100	2.5	11	49200	0	20200	25	30.8	41000	2030
SK-501	17.4	23	2.5	88.7	36300	0	23800	20	23	61600	3060
SK-302	0.8	5	3	21.2	24600	0	23000	39	20.2	17900	2190
SK-203	9.7	6	4.8	32.2	58000	0	22600	30	33.2	13500	3070
SK-564	11.7	0	5.1	6.9	43600	0	15600	29	39.3	29700	3480
SK-565	14.4	20	7.3	16.5	42400	0	26200	35	51.5	5990	1420
SK-566	11.7	40	4.7	22.5	19100	0	27100	19	29	4570	458
SK-567	9.8	74	2.8	13.7	31500	0	25300	33	34.7	10000	817
SK-568	5.6	23	1.5	35.5	19000	0	3040	0	12.8	4700	711
SK-569	9.5	8	6.2	33.7	19100	0	12700	12	11.2	2180	909
SK-570	15.4	24	3.1	37.1	26100	0	15700	14	22.3	9100	278
SK-571	16.4	22	3.1	187	36000	0	19200	18	23.3	16000	355
SK-572	28.7	144	1.5	31.8	32400	0	18600	14	20.7	23800	445
SK-573	27.3	257	2.1	13.9	27700	0	13700	12	14.5	11800	486
SK-574	8.7	63	7.3	33.1	36600	0	33000	39	50.7	10400	729
SK-575	11.9	51	3.5	8.1	29300	0	36400	24	14.6	9240	901
SK-576	14.3	91	2.8	34.3	40500	0	27800	31	37.3	13000	786
SK-577	13.8	109	2.3	181	29800	0	33200	34	32.3	14700	844
SK-578	12.5	96	2	17.2	40800	0	31000	37	19.1	11500	886
SK-579	12.3	67	2.3	23	28300	0	32400	31	7.4	8590	849
SK-580	9.2	84	2.3	22.9	31200	0	24200	25	27.9	10800	1560
SK-581	7.7	134	1.5	21.9	31100	0	13800	22	20.6	14100	1240
SK-582	10.6	85	5.4	12.8	13900	0	10100	13	7.2	9170	781
SK-583	5.5	39	2.5	23	16500	0	12000	14	13.9	5770	1040
SK-584	13.3	36	5.6	17.8	21800	0	38000	27	46.8	4780	1100
SK-585	6.3	33	1.8	20.5	19100	0	12400	13	11	4600	1350
SK-586	6.2	13	1.5	20.6	12200	0	2970	0	5.1	5890	954
SK-587	10.7	14	2.5	41.7	15200	0	7660	0	8.2	7790	948
SK-588	8.3	49	1.8	18.4	26400	0	7890	15	16.9	6550	1550
SK-589	12.5	9	2.1	12.4	69800	0	8770	27	26.4	4590	4210
SK-590	20.8	233	4.9	417	31400	0	30100	14	43.5	8680	1020
SK-591	25.9	129	3.5	22.9	18900	0	9420	0	10.2	21800	674
SK-592	9.5	38	7.1	23	28800	0	45100	32	40.1	10600	1070
SK-593	15.3	11	4.8	177	16900	0	20400	27	25.9	8680	2280
SK-594	6.5	35	5	20.4	30800	0	21000	31	18.8	4870	2970
SK-595	11.7	69	3.7	32.6	46600	0	29900	25	31.1	7540	773
SK-596	16.9	72	14.9	47.8	46300	0	31900	24	41.2	15500	878
SK-597	18.3	79	3.5	133	52900	0	28000	26	39.1	19200	614
SK-598	18	155	4.5	114	38200	0	23400	26	34.2	32400	3180
SK-599	12.5	97	2.2	134	23000	0	14200	26	23.8	57500	6420
SK-600	10.7	148	5.7	18.3	32400	0	41300	34	30.8	12600	1190
SK-601	9.2	105	2.7	6.5	34000	0	30700	34	18.8	14300	1860
SK-602	8.6	136	3.7	10.5	38800	0	41300	32	11.2	12900	1260
SK-603	10	120	2.6	75.8	30700	0	34200	36	15.5	8710	894
SK-604	9.8	113	2.3	138	34300	0	31700	33	24	13700	602
SK-605	11.8	90	1 7	27	35600	0	28800	33	12.2	5830	999
	1			<u>-</u> ·	20000	Ň	_0000			3000	000

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	ІС3М	IC3E	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M
SK-1	7.1	12600	7.6	23	622	10.3	34.2	640	0.6	6	0.9
SK-2	2.3	19800	10	20	862	21.9	43.1	890	0.4	7	1.1
SK-3	2.6	11800	5.3	25	599	4010	40.2	2200	15.5	6	0.9
SK-4	2.6	7930	0.6	6	159	40.1	3.7	180	0.5	0	0.4
SK-5	3.5	9200	0.9	11	536	9.2	8.8	410	0.2	2	0.4
SK-6	6.6	6730	1.6	18	338	10.2	15.9	970	0.5	2	0.5
SK-7	4.2	8660	2.1	41	308	2390	22.8	1530	10.2	3	0.6
SK-8	3.6	5190	5.7	20	445	362	37.1	1120	1.8	5	0.8
SK-9	1.4	21800	12.6	10	882	48.6	54.4	720	0.7	8	1.5
SK-10	2.6	11200	6.6	11	489	70.6	32.6	940	0.8	5	0.9
SK-11	5	15000	8.2	19	785	7.3	29.8	1210	0.8	7	0.8
SK-12	2.5	21200	14.4	13	1090	22.1	57	410	0.8	8	1.5
SK-13	1.7	21700	10	38	1270	5	31.4	780	0.5	12	1.2
SK-14	2.3	23900	13	39	1680	8.1	47.6	470	0.8	13	1.4
SK-15	4.7	1400	3.7	15	229	82.6	35.9	590	1.1	4	1
SK-16	5.3	1520	2.4	18	197	62.6	27.8	660	1.1	2	0.4
SK-17	5	3050	3.1	35	318	7.4	20.5	490	0.9	5	0.4
SK-18	8.1	423	2.6	17	172	16	29.7	580	0.7	4	0.6
SK-19	2	17200	12	107	1310	29.5	60.7	210	1	16	1.3
SK-20	1.9	16900	15.1	36	1420	2.8	81.5	350	1.4	10	1.6
SK-21	2.5	4770	7.6	11	541	4.2	43.5	520	0.8	6	1.3
SK-22	2.8	13200	12.5	7	1050	4.6	61.2	300	1.2	7	1.3
SK-23	1.9	11200	6	52	767	16.6	20.4	700	0.3	10	0.9
SK-24	2	7730	1.8	12	919	26.5	22.4	1320	0.3	3	0.4
SK-25	1.5	5460	1.7	109	415	11	12.3	1100	0.3	3	0.4
SK-26	2.5	9620	3.8	49	470	17.1	21.3	780	0.6	5	0.7
SK-27	3.7	5820	2.9	43	433	9.1	30.4	340	0.7	5	1
SK-28	2.5	8210	3	55	480	6.5	20.7	900	0.8	5	1
SK-29	7.7	3710	1.4	25	347	6.1	21.4	300	0.8	3	0.6
SK-30	2.3	8380	2.3	17	277	7.8	18.7	460	0.8	4	0.6
SK-31	5.7	8410	2.4	40	906	9.9	19.9	480	0.5	4	0.7
SK-32	5.1	2810	1.4	27	911	1960	17.9	1440	18.9	2	0.7
SK-33	4.1	9870	4.3	29	543	42.7	27.9	680	1.2	6	0.8
SK-34	2.4	20600	10.9	18	1080	25.2	44	860	0.7	8	1.7
SK-35	2.1	21300	10.8	26	1050	19.7	39.2	520	0.8	9	1.6
SK-36	2.7	23700	11.6	31	1550	19.4	65.6	350	1.4	14	1.8
SK-37	3.1	20500	10.6	24	1390	12.5	82.3	1390	2.2	13	1.6
SK-38	2.9	10600	7.9	33	867	11.1	23.8	590	0.7	6	0.8
SK-39	2.4	293	2.1	11	129	12.8	31.5	900	0.8	3	0.7
SK-40	2.8	10500	6.4	8	527	13.7	28.2	480	0.7	4	1.3
SK-41	3.1	21600	14.3	6	1270	16.2	68.1	190	1.2	8	2.2
SK-42	1.9	28800	15.7	5	1460	5.2	51.4	480	1.8	8	2.3
SN-43	1.9	25200	14	25	1560	31	59	260	1.6	15	2.4
SK-44	2	10100	12.9	30	1410	19.4	00 10 F	190	2.0	2	2
SN-40	1.4	007	0.0	0	404	23.7	13.5	990	0.1	2	0
SK-40	1.0	1730	0.0	9	441	94.1	10.0	020 940	0.2	2	0
SK-47	12.0	11200	0.0	9	272	10.4	7.2	400	0.5	2	0.2
SK-40	1.5	8050	0.9	40	145	21.8	17.2	250	0.1	4	0.5
SK-50	3.5	5140	0.5	40	443	21.0	10.8	430	0.2	3	0.0
SK-50 SK-51	1.5	0000	0.0	22	311	16.0	16.1	270	0.7	3	0.0
SK-57	3.1	8340	0.0	30	/83	13.4	13.7	1170	0.2	3	0.0
SK-53	2.6	4580	1.5	25	378	12.4	17.3	360	0.0	4	0.5
SK-54	10.5	3600	22	35	1180	19.6	16	790	1.8	4	0.0
SK-55	12	2450	1 7	16	440	16.4	18.2	2980	0.6	4	0.3
SK-56	14.1	1730	0.9	75	1790	20	12.9	480	1.8	4	0.3
SK-57	1 9	6180	3.6	.39	881	46.8	50.1	1010	1.5	16	0.8
SK-58	1.0	22000	9.4	14	1020	28.9	42 7	570	0.8	8	1 4
SK-59	7	24600	5.2	36	1410	19.8	46.5	940	3.8	10	1.2
SK-60	3.2	11500	4.9	13	549	52.3	31.6	780	0.8	5	0.9
SK-61	2.7	5840	4.3	31	522	10.9	25.1	490	0.6	5	0.6
			-	-						-	

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	<i>IC3M</i>	IC3E	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M
SK-62	1.1	12000	3.2	22	514	4.4	21.1	460	0.5	11	0.6
SK-63	1.1	1910	3.8	15	396	8	43	950	1.4	6	1.1
SK-64	1	21400	11.4	11	1290	9.4	61.4	320	1.3	10	1.6
SK-65	1.3	28700	13	9	1820	14.4	70.3	180	1	11	1.7
SK-66	0.8	34600	16.8	8	1770	11.3	65.7	150	0.8	11	1.9
SK-67	0.4	503	0	6	382	9.7	8.5	580	0.1	1	0
SK-68	0.7	1810	1	9	238	4.2	12.6	1150	0.6	2	0.2
SK-69	0.8	1310	0.8	22	425	5.2	10.3	990	0.4	2	0.3
SK-70	0.7	14700	0.8	72	354	31.5	10.2	650	0.9	4	0.5
SK-71	1.5	9140	1.9	52	382	11.4	11.2	350	0.8	5	0.7
SK-72	1.3	7660	0.8	59	254	38.4	19.2	270	0.3	7	1
SK-73	0.8	11500	0	16	240	16.1	5.1	420	0.3	2	0.4
SK-74	3.4	4880	1.2	73	458	13.2	10	3540	2.3	3	0.7
SK-75	4.5	3450	1.2	75	1490	12.6	10.9	7650	2.9	4	0.6
SK-76	5.3	1710	1.6	25	895	26.2	23.8	1920	1.8	4	1.1
SK-77	2.3	5120	1.8	39	619	11.1	14.4	260	0.6	4	1.2
SK-78	5.3	6430	2.6	36	839	7.1	15.9	550	0.9	4	0.8
SK-79	0.8	7590	10.6	37	1330	4.3	16.1	790	0.5	12	1
SK-80	0.5	3110	4.1	19	690	210	11.5	530	1.6	6	0.4
SK-81	2.7	8850	5.7	17	808	28.7	23.1	570	0.9	5	0.6
SK-82	1.4	7630	3.4	32	569	10.9	18.2	660	0.7	4	0.8
SK-83	3.9	657	1.2	14	658	16.7	8.6	910	0.9	2	0.4
SK-84	2.3	8640	5.7	55	1050	15.8	24.1	660	0.9	11	0.7
SK-85	1.2	17700	3.6	25	822	13.3	45.1	420	3.6	8	1.7
SK-86	2.1	19600	6.8	19	757	13.3	42.6	1180	5.1	7	1.7
SK-87	1.8	19200	7.8	18	977	24.9	39.2	530	0.8	8	1.5
SK-88	1.7	5990	3.7	21	614	9.1	19	1220	2.4	11	0.7
SK-89	0.8	4750	5.1	35	396	18.5	23.9	380	0.4	6	0.7
SK-90	2.8	13800	8.4	15	701	49.3	26.3	460	1.1	8	1.2
SK-91	1.7	13700	9	79	857	23.1	23.5	380	1	12	0.9
SK-92	1.5	26400	16.3	9	1280	10.4	74.2	370	0.9	9	1.5
SK-93	11	6330	12.5	17	1000	2.6	64.6	440	1.7	8	1.1
SK-94	2.1	8020	2	70	374	104	19.4	470	0.5	3	0.6
SK-95	3.9	8750	3	70	536	91.1	22.5	960	0.9	4	0.6
SK-96	14.2	1520	3.7	44	1070	17.7	44.7	1950	2.4	5	0.9
SK-97	6.4	565	1.8	13	622	13	30.6	1970	1.9	2	0.6
SK-98	6	3820	1.3	15	448	10.2	18.5	850	0.6	2	0.4
SK-99	3.3	3490	3.1	24	245	7	32.5	360	0.5	3	0.7
SK-100	4.2	3420	2.8	23	268	13.3	33.1	490	0.9	3	0.7
SK-101	2.6	4700	7.2	28	791	33.6	24.3	690	0.8	7	0.5
SK-102	7.1	7210	6.7	9	471	6760	41.2	910	30	4	0.9
SK-103	13.9	313	1./	15	156	334	21.4	//0	4.5	2	0.4
SK-104	11.4	358	2	24	250	17400	34	1870	36.8	3	0.6
SK-105	0.5	1210	1.7	10	041	48.3	25.1	1210	0.7	2	0.3
SK-100	1./	6040	1.3	13	400	10	10.4	540	0.2	2	0.4
SK-107	1.4	1020	0.0	∠ I 11	100	01	4.4	530	0.3	2	0.2
SK-100	0.2	6420	24	110	422	12.2	14.2	600	0.3	2	0.4
SK-110	0.3	6730	2.4	33	370	12.5	14.2	620	0.2	3	0.4
SK-110	2	10500	2.1	22	576	4.5	24.7	210	0.3	5	0.3
SK-112	4.0	1820	ر م	16	610	9.9 02	24.1 28	1640	1	2	0.7
SK-113	4.3	2550	<u> ۲</u>	24	2013	25	20	1040	1	2	0.5
SK-114	5.8	3480	24	24	356	03.0	20.0	640	12	2	0.5
SK-115	27	3110	2.7	27	172	108	22.1	240	0.9	2	0.0
SK-116	3.6	5070	1.5	20	270	14 /	15.7	440	0.0	2	0.0
SK-117	0.0	614	1.0	7	288	11.4	23.1	530	8.7	2	0.4
SK-118	20	304	21	13	200	61	26.8	710	54	2	0.0
SK-119	1.3	337	2.1	9	203	28	20.0	730	2.4	2	0.0
SK-120	62	369	2.2	15	203	497	27.6	890	6.8	3	0.5
SK-121	17.5	227	1.5	51	168	5710	19.1	1180	22.3	2	0.3
SK-122	14.5	199	1.8	15	197	4630	21.1	680	14	2	0.3
	-	1				-	1				1

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	ІС3М	IC3E	IC3M	IC3E	IC3M
SK-123	3.9	1030	1.6	33	217	2110	18.8	1130	9.3	2	0.4
SK-124	2.4	8590	7.2	31	768	959	22.6	1580	4.1	8	0.6
SK-125	8.4	5980	5.4	26	424	1410	22	560	10.1	4	0.9
SK-126	0.7	10800	7.7	14	521	56.3	42.8	410	1.1	6	0.9
SK-127	0.8	17300	9.9	17	733	37	48.8	440	1.2	8	2.7
SK-128	1.5	8950	6.2	14	552	149	35	1000	2.8	5	0.9
SK-129	1.9	11800	7	13	511	17.9	39.7	630	1.7	7	1.1
SK-130	1.9	7390	3.5	13	158	16.3	25	420	0.5	4	0.7
SK-131	8.1	10400	7.5	14	515	10.7	40.4	300	0.7	5	0.9
SK-132	1.8	9520	7	19	448	30.2	56.4	620	1.3	6	1.1
SK-133	3.1	1900	6.1	13	594	27.1	35.2	330	1.4	9	0.7
SK-134	3	6520	1.8	36	319	5.5	24.3	290	0.3	3	0.7
SK-135	4.8	6610	1.3	33	560	6.6	18.7	180	0.6	2	0.5
SK-136	13.1	3050	1.2	34	760	16.4	20.6	310	0.9	2	0.4
SK-137	4.1	6970	2	37	323	8.1	28.2	360	0.5	4	0.7
SK-138	5.3	3100	1.8	22	229	25.9	24.5	750	0.7	2	0.6
SK-139	2.5	9180	7.6	40	911	13.1	31.5	660	1.2	9	0.8
SK-140	3.2	5010	4.1	33	526	43.8	20.4	590	1	5	0.6
SK-141	5.6	260	2.5	16	165	480	34	860	6.5	3	0.6
SK-142	9.9	427	2.6	39	487	1340	28.2	1080	33.4	3	0.6
SK-143	6.6	285	2.2	21	298	4690	29.4	1390	26.6	3	0.6
SK-144	15.8	121	0.8	13	112	1010	9.4	620	5.9	0	0
SK-145	10.4	209	0.6	47	154	10500	16.6	1250	16.5	1	0.4
SK-140	8	200	1.2	13	117	6720	17.1	1310	25.2	1	0.4
SK-147	4.0	155	0	15	100	7560	0.8	1190	20.5	0	0.6
SK-140	1.3	4//	1.0	107	03 202	7500	20.3	1040	10	1	1.4
SK-149	4	027	1.0	127	302	74	21.5	470	1.7	4	0.3
SK-150	0.7	762	0.0	4	340	30.0	15.9	470	0.5	2	0.4
SK-157	1.6	8130	2.9	27	108	10.7	5	380	0.5	3	0.4
SK-152 SK-153	0.0	610	0.0	7	200	15.4	13.3	450	0.3	1	0.3
SK-154	11.8	2330	0.7	15	723	11.4	15.5	830	0.0	2	0.2
SK-155	3.4	4630	0.9	23	386	18.4	10.0	170	0.5	2	0.5
SK-156	4.7	2750	1.3	19	384	35	22.5	930	0.9	2	0.5
SK-157	4.1	2360	1.8	13	342	12	23.8	350	0.6	2	0.7
SK-158	5.3	3730	0.8	26	390	466	12	410	1.9	2	0.4
SK-159	7.9	4590	1.7	34	777	18.1	24.8	790	0.9	3	0.7
SK-160	2.8	125	1.2	9	145	139	18.8	470	1.2	2	0.3
SK-161	3.1	265	2.2	11	261	3570	26	930	21.1	3	0.5
SK-162	4.6	207	1.1	11	73	1330	18.5	970	10.4	2	0.3
SK-163	8.9	225	1	19	254	4500	22.6	1180	16.4	2	0.3
SK-164	6.3	186	0	71	110	22200	14.9	2330	28.1	1	2.1
SK-165	21.5	276	0	21	109	29900	9.4	2570	26.4	0	1.5
SK-166	18.9	725	1.7	37	354	19800	32.1	1740	49.5	2	0.8
SK-167	8.4	163	1.3	16	102	890	20.3	830	10.7	2	0.3
SK-168	2.3	351	1	14	70	4150	25.2	1300	18	2	0.6
SK-169	7.7	546	1.6	12	138	748	21.9	910	6.4	2	0.5
SK-170	2.9	5800	3.6	15	431	273	25.9	990	4.2	3	0.7
SK-171	6.1	1640	1.9	16	222	38.3	21	320	2.4	5	0.5
SK-172	11	1440	0.7	27	249	309	24.4	500	22.3	3	0.6
SK-173	5.3	8760	3.3	17	341	27.5	23.2	590	1.2	6	0.8
SK-174	1	15200	3.1	13	235	87.5	18.9	470	0.5	5	1
SK-175	10.1	8400	3.1	17	210	14.6	23.5	380	1.2	4	0.9
SK-176	7.6	185	1.6	11	176	21.2	17.3	360	0.6	4	0.5
SK-177	1.4	11400	3	17	400	67.2	11.9	260	0.6	8	0.6
SK-178	2.6	365	2.5	12	390	569	25.3	700	2.9	3	0.5
SK-179	5.9	257	2	17	628	1740	22	1050	13	2	0.3
SK-180	3.1	291	1.6	11	237	1180	14.2	500	15	2	0.2
SK-181	14.2	228	1.5	18	328	12200	14.6	1320	67	2	0.5
SK-182	8.5	361	1.5	31	66	3450	21.3	1410	27.1	2	0.4
SK-183	1.4	7390	10	11	771	20.9	59.7	460	1.2	6	1

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	<i>IC3M</i>	IC3E	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M
SK-184	11.4	540	2.2	12	171	82.7	17	590	2.8	3	0.4
SK-185	12.5	286	1.4	6	247	282	12.8	1120	4.6	2	0.3
SK-186	4.6	866	1	33	508	15.9	14.4	980	0.7	3	0.4
SK-187	2.1	4180	3.9	22	257	13.4	34	760	1.4	5	1.1
SK-188	3.7	4320	2	23	287	1820	26.9	540	1.4	3	1
SK-189	5.4	2990	2.7	18	425	195	18.8	520	1.6	3	0.6
SK-190	14.6	270	1.9	13	193	2170	18.5	630	3.4	2	0.4
SK-191	3.5	307	2.8	13	215	585	24	520	3	3	0.5
SK-192	8	278	1.8	24	175	16000	16.4	1140	114	2	0.5
SK-193	32.4	192	1	22	70	9310	14.2	1530	56.8	1	0.3
SK-194	5.2	331	1.8	11	78	1310	18.8	740	8.2	2	0.4
SK-195	3.1	320	1	77	92	18900	14.1	4300	111	2	1
SK-196	1.4	777	1.2	11	132	298	13.3	700	1.8	2	0.3
SK-197	1.8	4780	1.4	17	197	105	14	340	1.3	2	0.4
SK-198	1.1	4900	1.7	17	237	188	16.4	490	4.3	3	0.5
SK-199	0.7	4930	2.5	14	306	28.5	16.4	520	1	3	0.5
SK-200	1.9	9050	9.6	14	812	24.3	15.4	390	3.1	5	0.9
SK-201	1	292	2.6	9	202	331	14.9	440	7.3	2	0.4
SK-202	2.2	1410	4.2	16	258	102	21	440	1.8	3	0.6
SK-203	0.9	13800	5.7	12	369	76.8	16.9	590	0.6	6	0.9
SK-204	2.8	5160	13.4	1	1410	5.9	41.4	460	1.9	8	1.4
SK-205	0.7	1020	5.8	13	230	208	35.6	480	10.5	0	1.1
SK-200	21.7	1290	1.0	20	204	12.1	19.5	5060 640	12.0		0.4
SK-207	93	9750	12.2	12	1020	12.2	33.2	40	2.5	6	1.1
SK-200	3.3 1 Q	9730	83	12	555	9.8	21.4	770	1	5	0.9
SK-210	21.2	8910	6.1	43	540	15700	24.6	610	97	5	0.0
SK-211	3.7	4700	3	15	340	2780	17.8	550	13.9	3	0.5
SK-212	10.6	332	0.7	26	72	10700	10.7	650	68.2	0	0.3
SK-213	7.5	272	1	10	54	1300	14.2	560	8.2	2	0.2
SK-214	8.3	2340	1.7	11	125	363	17.3	770	1.9	2	0.4
SK-215	2.3	420	1.9	14	133	97.9	16.1	790	2	2	0.4
SK-216	3.2	5490	2.1	12	231	63	16.5	400	3.9	2	0.5
SK-217	0.9	5560	1.1	14	174	7.1	14.1	180	0.4	2	0.4
SK-218	2	2330	1.5	15	289	15.3	14.6	210	0.9	2	0.4
SK-219	0.8	10800	2.5	13	395	14.8	16.2	210	0.6	3	0.6
SK-220	1.9	18200	8.2	16	910	269	18	1050	4.3	5	0.9
SK-221	2.1	8310	6	23	477	27.3	26	760	2.8	5	0.8
SK-222	3.4	354	2	16	127	1350	23.6	740	13.6	2	0.4
SK-223	1.1	475	4.5	18	281	6.6	29.5	410	0.9	4	0.6
SK-224	2.6	15500	5.6	12	397	84.5	24.7	660	1.1	5	0.9
SK-225	0.9	4140	1.4	6	105	15.5	5.2	1770	0.5	1	0
SK-226	1.8	15700	11.9	8	882	19.9	37	400	1.4	7	1.3
SK-227	2.8	928	4.9	5	494	61.5	37	1640	3.6	5	0.4
SK-228	4.7	634	5	1	499	0	29.5	2260	4.9	6	0.5
SK-229	8.4	429	2.4	12	04	52.7	20.7	1980	3.4	3	0.4
SK-230	25.0	103	1.0	17	100	382	21	530	19.7	2	0.3
SK-237	21.3	6370	4.2	19	547	57.3	26.8	520	33	12	0.0
SK-232	21.2	419	2.3	13	148	263	20.0	590	2.6	2	0.0
SK-234	2.4	274	13	9	89	71 9	19	490	2.0	1	0.4
SK-235	24	1290	2.3	11	130	82.4	23.4	700	1.3	3	0.2
SK-236	1	15700	5.9	22	543	5.5	29.4	270	0.6	7	0.9
SK-237	0.9	9220	4.1	19	535	3.8	29.1	480	0.7	4	0.7
SK-238	1.1	8010	5	17	357	8.4	31.3	370	0.7	5	0.9
SK-239	0.9	7290	5.6	16	429	12.3	34.9	550	0.8	5	0.8
SK-240	2.2	9080	4	14	281	14.9	25.6	710	0.6	3	0.6
SK-241	4.4	12900	8.3	19	645	279	39.6	1240	6.2	7	1.1
SK-242	1.5	13700	8.1	11	677	3880	23.2	1120	4	5	0.7
SK-243	1.6	32900	16.7	8	1550	18.2	24.8	340	4.1	9	1.2
SK-244	1.6	427	5	19	311	39.3	33.4	320	2.4	4	0.7

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ppm	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	ІС3М	IC3E	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M
SK-245	18.4	891	5.4	16	334	121	31.7	730	5.8	5	0.9
SK-246	3.4	9180	7	12	534	32.3	34.5	920	1.4	6	0.9
SK-247	1.7	291	1.2	6	103	87.6	17.9	410	1.3	1	0.3
SK-248	2.5	3080	9.5	5	895	5.3	67.8	1480	4.3	7	0.6
SK-249	6.3	505	3.6	6	387	6.2	19.6	2730	3.1	5	0.4
SK-250	0.7	20600	7.9	42	569	7.6	37.2	4590	1.1	10	1.4
SK-251	29.9	167	1.2	18	105	334	15.2	820	15.7	1	0.2
SK-252	9.3	222	1.8	13	237	142	21.3	530	3.9	2	0.3
SK-253	4.6	222	1.6	12	107	60.3	19.5	640	2.6	2	0.3
SK-254	1.7	4340	3.1	17	263	4.5	24.5	230	1.1	2	0.5
SK-255	2.1	8050	2.6	19	273	30.5	20.3	220	1.5	3	0.5
SK-256	1.1	12900	4.9	17	386	11.9	25.2	300	0.8	4	0.8
SK-257	1.2	13300	4.1	12	378	4.6	20.4	230	0.9	3	0.6
SK-258	2.7	6640	6	26	396	3350	26.7	590	12.2	5	0.8
SK-259	1.4	19900	10.9	15	769	57.6	43.6	260	1.6	7	1.1
SK-260	2.9	9110	7.6	19	549	105	32.4	600	2.5	6	1.1
SK-261	1.1	12400	6.7	16	540	58.4	22.5	560	1.9	7	0.9
SK-262	2.5	1090	2.2	9	146	14500	17.8	1260	77.2	1	1.1
SK-263	2.4	499	2.7	10	153	475	23.3	940	3.5	2	0.3
SK-264	4.8	10900	6	50	447	1560	27.8	570	5.5	5	0.7
SK-265	2.7	4480	3.7	15	590	237	24.7	690	2.3	4	0.8
SK-266	2.5	1180	4.4	14	359	13.4	27.5	550	0.7	5	1
SK-207	2	29100	7.8	18	834	8.8	19.8	1170	0.6	1	1.2
SK-208	1.5	3760	2.7	17	310	23.5	28	570	0.6	4	0.8
SK-209	3.0	2910	11.4	15	920	2210	20.5	2470	2.0	0	0.7
SK-270	10.7	5830	5.9	22	/10	66.4	45.2	1900	22	5	0.7
SK-277	7 1	445	0.5	22	78	282	8.5	720	13.7	0	0.7
SK-272	4.6	432	1.5	19	137	107	22.8	580	1.3	3	0.5
SK-274	1	10100	1.6	18	258	10.6	16.7	200	0.6	3	0.5
SK-275	0.9	9320	2.1	15	310	9	16.7	230	0.6	3	0.5
SK-276	1.3	13100	6.2	12	674	32.7	44.8	300	0.6	5	0.8
SK-277	1.1	31100	11.8	8	1610	20.7	65.2	240	0.6	8	1.4
SK-278	0.9	13800	4.5	13	556	11.6	34.4	320	0.5	5	0.9
SK-279	1.1	13100	2.7	23	451	70.7	21.8	340	0.7	5	0.8
SK-280	0.8	8780	4.2	14	426	11.5	31.8	240	0.5	5	0.9
SK-281	2.5	22200	10.5	15	1050	8.7	43.9	490	0.9	8	1.2
SK-282	4.2	6850	4.2	16	531	140	36.4	610	1.7	6	1
SK-283	1.3	4590	3.8	18	416	34.3	42.6	770	1.6	5	0.8
SK-284	4.7	1610	1.9	21	219	15200	20.6	890	131	2	1.2
SK-285	0.8	633	2.8	14	343	78	36.7	670	2.6	4	0.8
SK-286	3	413	0.9	15	142	15000	11.5	1830	42.3	2	0.3
SK-287	1.7	2670	3	17	310	44	25.2	190	1.8	4	0.8
SK-288	1.3	16900	4.8	48	556	16.3	28.3	550	0.4	5	0.8
SK-289	1.1	1530	2.2	9	149	19.2	28.3	470	0.5	3	0.7
SK-290	19.8	397	1.1	23	95	466	16.1	700	11	2	0.3
SK-291	2.8	5090	2.8	25	343	13.4	22.8	770	0.9	4	0.8
SK-292	3.1	2580	12.1	5	1320	14.0	94	2500	2.0	9	1.5
SK-293	20.5	1580	13.3	5 62	1440	40.2	25	1880	0.4	0	0.6
SK-294	17.3	716	1.0	26	80	334	10.8	1300	9.4	2	0.0
SK-296	16	2600	29	15	418	12.8	28.6	200	1	- 3	0.0
SK-297	5.1	5170	5	16	439	43	44.1	390	0.8	7	1
SK-298	1.2	3870	2	13	235	16.3	17.6	290	0.4	3	0.6
SK-299	1	6030	- 1.8	17	375	4.7	18.4	330	0.5	2	0.5
SK-300	1	5460	1.6	15	332	4.7	20.5	240	0.9	2	0.5
SK-301	0.8	5000	3.5	18	379	6.7	34.5	220	0.8	5	1
SK-302	0.8	7510	4.2	13	326	8.1	24.6	270	0.7	5	0.9
SK-303	1.7	43600	15	7	1580	7.2	58.6	210	0.5	8	1.5
SK-304	2.8	31900	12	12	1380	7.1	56.3	300	0.5	8	1.4
SK-305	1.2	1630	3.4	26	327	6.8	21	380	0.7	4	0.7

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M
SK-306	1.6	4590	4.4	12	422	12.1	29.3	580	1.1	5	0.9
SK-307	1.9	2270	3.7	15	334	23.2	25.6	420	0.8	4	1.5
SK-308	3.2	1010	2	13	197	59.7	22.1	730	2.1	3	0.5
SK-309	1.9	664	2.6	15	298	37.8	28.7	760	2.1	3	0.6
SK-310	2.8	2310	1.6	12	120	733	18.7	780	2.6	2	0.5
SK-311	4.4	7050	2.3	10	307	9.3	29.7	260	0.7	3	0.7
SK-312	1.8	13000	3.2	16	401	6.7	22.1	1070	0.4	4	0.7
SK-313	16.8	785	1.2	55	217	161	19.2	1240	28.7	2	0.4
SK-314	2.1	13400	6.8	15	600	251	63.2	700	2	6	1.2
SK-315	0.8	4470	2.4	10	446	20.1	26	300	0.7	3	0.6
SK-316	1.8	22700	7.6	11	867	198	62.5	490	1.2	7	1.1
SK-317	3.2	7440	14.3	9	1370	62.5	95.4	1020	2.7	9	1.3
SK-318	3	21000	9.6	21	1370	164	79.3	250	1.8	9	1.5
SK-319	2	7760	4.4	16	491	31.6	53.9	340	1.1	6	1
SK-320	0.8	613	2.3	11	270	10	21	560	0.6	3	0.6
SK-321	0.8	3160	1.4	11	416	5.6	23.4	190	0.6	2	0.5
SK-322	2.8	1750	1.4	15	579	18.2	22.8	150	1.1	3	0.5
SK-323	3.4	679	2.7	21	528	5.6	24	340	1	4	0.7
SK-324	1.1	301	1.5	7	326	2.6	23.3	130	0.6	2	0.5
SK-325	1	4210	2.8	15	263	7.2	35.4	160	0.6	4	0.7
SK-326	1.8	10800	5.1	9	659	8.7	39.2	270	2.3	5	0.8
SK-327	1.4	16800	5.8	13	664	6	39.5	210	0.6	5	0.8
SK-328	1	4150	2.2	14	455	16	31.4	160	1	3	0.7
SK-329	3.4	752	3.2	11	230	7.7	28.6	350	0.8	4	0.8
SK-330	1	3220	3.6	13	363	7.3	35.1	520	0.6	5	0.8
SK-331	3	2310	1.5	13	413	6.5	22.2	140	0.8	3	0.5
SK-332	1.8	6890	5.1	28	552	7.4	40.4	440	0.6	10	1
SK-333	2.3	474	1.1	11	176	9.5	19.9	680	1.2	2	0.3
SK-334	5.2	637	3	24	349	158	39.9	430	2.4	4	0.8
SK-335	1.5	25300	7	22	756	21.7	49.9	760	1.3	8	1.4
SK-336	1.2	21500	6.9	18	772	209	48.6	340	1.1	7	1.1
SK-337	1.8	19200	7.3	15	804	757	48.4	1330	2.5	8	1.3
SK-338	2.3	10600	8.1	18	889	482	58.1	590	4.8	7	1
SK-339	0.6	6700	3.3	15	385	6.3	38.1	380	0.6	5	0.8
SK-340	0.8	546	1	7	235	13.8	16.8	120	0.5	2	0.4
SK-341	4.2	14700	5.1	21	716	21600	42.9	18400	111	6	1.8
SK-342	4.9	10500	5	21	648	3210	45.4	3010	20.3	6	1.1
SK-343	3.1	21400	7.3	20	905	449	62.7	720	1.5	8	1.2
SK-344	3.3	383	1.3	31	304	19.3	23.6	240	1.4	3	0.5
SK-345	2.3	453	1.2	17	478	9.2	21.1	190	1.1	3	0.5
SN-340	2.2	6270	5.8	11	723	23.5	35.4	380	1 2	5	0.7
SK-347	1.0	4700	4.2	20	000	7.4	23.1	140	1.3	10	0.7
SK-340	1.0	520 522	1.0	10	202	7.4	23.7	140	0.7	2	0.5
SK-343	2.1	2300	1.0	14	203	7.5	20.0	140	0.7	2	0.5
SK-350 SK-251	0.0	6040	1.4	14	101	27.1	18	100	0.0	3	0.0
SK-357	0.9	8590	2.5	24	668	/3	22.9	130	0.7	8	0.4
SK-352 SK-353	7.2	36000	10.3	7	1650	11.2	82.3	210	0.7	9	1.4
SK-353	73	11100	7	25	645	3570	52.2	1120	1/1 3	6	1.4
SK-355	2.4	17900	, 9.1	23	859	104	56.6	340	14.0	10	1.2
SK-356	3.4	11100	6.2	14	553	371	41.9	770	53	5	0.8
SK-357	2.1	3540	3.2	12	377	13.3	24.3	190	0.9	3	0.7
XX20	2.1	226	0.2	45	109	67600	10.7	8250	351	1	0.7
SK-359	2.4	3440	31.4	51	2600	194	86.3	1380	4.2	15	1
SK-360	1.7	4200	11 7	42	1200	26.5	74.5	2070	27	11	0.7
SK-361	1.2	1980	3.3	16	407	22.7	56.9	11700	0.3	10	0.6
SK-362	23	2300	3.6	.31	425	18.3	52.2	1010	1.2	11	0.7
SK-363	2.5	10800	16.6	27	886	36.8	120	1110	1.5	9	22
SK-364	2.7	12900	16.8	30	1010	30.6	128	800	1.3	14	1.9
SK-365	2.4	9000	18.9	16	939	24	124	630	2.3	10	2.4
SK-366	3.2	8890	11.8	23	719	15.3	111	1030	2.6	14	1.5
				-	-				-	1	

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M
SK-367	2.4	5720	9.1	36	850	28.2	62.3	900	2.5	14	1.2
SK-368	2	22700	12	21	1590	21.3	77.9	410	0.7	21	1.4
SK-369	1.5	18400	10.6	66	1340	22.5	54	580	0.8	19	1.2
SK-370	2.8	21300	11.6	13	1100	45.4	70.6	430	1.1	8	1.3
SK-371	2.3	10800	6.9	21	621	1630	57.8	1570	13.7	6	1
SK-372	2.2	26500	11.5	18	972	293	58.2	430	1.3	9	1.3
SK-373	2.3	3270	7.7	7	417	57.2	34	1240	7.6	7	1.7
SK-374	60.9	19000	10.9	23	1070	16300	61.9	550	91.3	8	1.5
SK-375	1.4	4620	3.5	16	430	50.6	17.8	330	1.3	4	0.7
SK-376	2.7	314	1.9	20	318	13.5	25.9	170	0.8	3	0.6
SK-377	1.4	4130	1.9	15	422	4.7	16.7	220	0.7	3	0.6
SK-378	1.8	1470	1.7	25	328	3.7	18.9	120	0.6	3	0.6
SK-379	3.6	2920	2.2	24	317	3.6	31.2	260	1	3	0.7
SK-380	3.6	1440	2.4	15	296	2.6	26.5	160	0.7	3	0.7
SK-381	1.7	370	2	14	430	2.9	28.3	160	0.5	3	0.6
SK-382	1.3	8020	3.4	12	508	6.2	32.3	140	0.6	3	0.7
SK-383	2.9	31600	19.1	8	1740	11.6	86.8	250	0.5	10	1.3
SK-384	2.2	6610	11.4	29	1050	31.9	82.9	670	2.3	15	1.4
SK-385	2.8	13800	13.7	23	1420	49.9	70.2	1230	4	20	1.6
SK-386	1.5	22000	12.3	126	1440	23.9	29.7	400	0.5	25	1
SK-387	3	8580	7.5	27	628	5500	41.1	1540	32.7	7	1
SK-388	2.5	5920	7.6	10	801	38.4	59.3	840	3	9	0.8
SK-389	2.9	4400	3.3	10	407	80.3	26.4	1480	3.4	5	0.5
SK-390	3	20700	9.6	15	783	158	53.9	540	1.2	1	1.1
SK-391	1.9	11900	16.2	9	1930	25.3	71.5	500	2.2	14	1
SK-392	2	11100	9.8	15	441	5.8	41.5	1580	0.3	7	1
SK-393	3.9	079	7.5	10	090	34.0	40.0	000	0.0	7	0.0
SK-205	1.0	3400	9.2	21	755	3.5 10.2	50.1	930	1.0	10	0.3
SK-396	4 1	1850	3	21	609	49.4	30.1	1070	3.9	22	0.0
SK-397	1.1	1260	1	63	193	27	25.4	1250	1.3	9	0.0
SK-398	3.3	11400	8.3	34	908	14.8	96.2	620	0.4	14	1.4
SK-399	2.7	21600	14.1	10	864	22.9	142	660	0.5	9	2
SK-400	2.8	20600	14.1	11	981	23.5	141	1790	0.6	8	2.1
SK-401	2.9	20800	11.1	16	1270	44.9	94.9	730	0.5	14	1.7
SK-402	4.7	6300	7.3	36	998	41.5	83.2	820	7.9	16	1
SK-403	3.3	20800	8.3	48	1180	35.8	74.1	250	0.9	12	1
SK-404	1.8	22600	8.6	18	963	43.4	92.3	350	1.1	8	1.4
SK-405	2.3	7780	3.6	9	484	76.8	42.7	1470	2.2	6	0.5
SK-406	3	21100	7.1	19	877	169	77.4	700	1	8	1.1
SK-407	3.9	17300	6.9	13	873	68.3	76.7	330	1.1	7	1
SK-408	2.5	8690	12.6	13	1890	29.5	97.2	700	2.8	14	0.9
SK-409	3.7	993	2.3	13	414	12.7	27.4	430	0.9	4	0.6
SK-410	1.1	310	1.1	9	215	2.8	24.7	210	0.6	2	0.5
SK-411	1.3	2340	1.3	20	249	4.7	20.8	190	0.6	3	0.5
SK-412	1.6	542	1.8	14	308	9.3	46	150	0.6	4	0.7
SK-413	2.5	773	1.4	20	213	4.1	39.1	160	0.8	3	0.6
SK-414	2.1	26700	13.7	24	1520	21.2	89.1	630	0.6	19	2.2
SK-415	7	18900	9.4	44	1370	27.6	86.7	510	0.8	19	1.7
SK-416	2.6	17900	7	17	835	65.1	76.8	370	1.2	7	1
SK-417	1.5	1850	3.1	1	553	1.9	43.6	3090	/	4	0.5
SK-418	3.1	77200	7.1	74	852	123	/3./	980	2.8	9	1
SK-419	3.1	12700	2.4	1	380	17.2	29	1510	0.7	4	0.4
SK-420	2.0	13/00	ŏ./	21	5/8	20./	70.7	1510	0.7	9	0.0
SK-421	0.9	13400	0.J	21	δ/U 2140	10.4	10.7	970	0.1	10	0.0
SK-422	2.3 1	1030	22.1 10.5	00	214U 1000	200	50 F	1000	2.4 1 0	12	0.0
SK-425	61	1500	10.0 2.6	30	720	24.7	70.9	2570	1.0	ວ 1 ຊ	0.3
SK-425	26	1620	2.0	10	907	39.7	65.7	730	3.2	11	0.7
SK-426	2.0	1/300	2.4 13.2	-+9 20	000	10.9	130	820	0.5	12	1.0
SK-420	2.1	22300	15.2	20 Q	993	28	143	920	0.0	۲ <u>۲</u>	3.8
	2.0	22000	10.1	, J	301	20	140	500	0.0	5	0.0

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	<i>IC3M</i>	IC3E	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M
SK-428	2.7	15200	10.2	20	1260	24	113	1330	2.1	16	1.5
SK-429	1.9	26800	13	20	1520	20.3	111	510	0.5	20	2
SK-430	2.5	21300	8.5	24	1210	17.8	92.5	910	0.7	17	1.4
SK-431	1.6	24600	7.9	21	1250	35.1	77.7	920	0.9	11	1.2
SK-432	1.3	12000	5.7	21	817	45.1	56.9	820	1	9	0.9
SK-433	1.4	1470	2.4	9	350	17.6	32.3	4540	6	4	0.4
SK-434	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S
SK-435	2.2	2710	10.2	9	1330	12.7	110	630	2.6	8	1.4
SK-436	1.5	11600	9.5	25	1870	24.8	107	660	2.7	19	1.1
SK-437	1.3	564	0	15	233	6.6	8.8	200	0.8	1	0.3
SK-438	1.2	952	1.3	17	186	16.7	28.7	220	0.7	3	0.5
SK-439	1.2	566	1	14	229	4.8	21.6	160	0.4	2	0.4
SK-440	1.6	2550	1.3	21	336	5.3	26.1	140	0.7	3	0.6
SK-441	1.8	1620	1.9	34	248	8.9	23.6	270	3.5	3	0.7
SK-442	3	18400	18	43	550	37.7	66.4	5390	1.3	8	3
SK-443	6.4	7630	6.9	20	485	43.2	54.2	1760	2	4	0.8
SK-444	2	3370	43.4	70	2610	17.2	84.3	1930	2.9	14	1.1
SK-445	1.8	6110	26	48	1310	7.1	50.4	1790	1.9	8	0.5
SK-446	2.1	3020	31.4	80	1870	18.4	111	1230	2.5	10	0.7
SK-447	2.6	723	2.5	29	328	21.1	34.5	670	2	10	0.5
SK-448	1.9	6750	4.3	30	289	9.2	33.0	900	1.2	0	0.5
SK-449	2.2	17000	15.8	127	1080	20.5	84.9 40.6	490	12	18	2.4
SK-450	2.4	0320	5.4	40	200	47	40.0	750	1.3	5	1
SK-457	2.4	7280	12 /	28	837	20.8	80.1	750	1.1	16	16
SK-452 SK-453	2.9	6060	12.4	20	927	15.1	81.8	750	2.4	10	1.0
SK-454	2.2	5460	7.5	52	598	9.8	48	600	0.9	12	0.6
SK-455	2.3	2480	2.3	28	246	25.9	14.8	1140	0.7	3	0.5
SK-456	3.3	11300	4.5	27	369	102	20.1	910	1.3	4	0.9
SK-457	1.5	9930	10.1	34	851	18.7	55.1	670	3.3	17	1.4
SK-458	20.6	530	1.8	22	127	683	20.5	1230	3.9	2	0.3
SK-459	1.9	2390	5.7	31	336	5.5	24	770	0.6	4	0.8
SK-460	2.5	522	1.7	30	144	7.8	21.8	550	1.8	3	0.6
SK-461	2	397	2	21	168	2.6	30	190	0.6	3	0.7
SK-462	2.1	511	2.3	21	165	5.7	20.4	210	0.7	3	0.7
SK-463	2.1	4620	3.6	25	230	27.5	22.9	730	0.9	3	1.1
SK-464	2.4	18400	16.4	22	591	75.6	62.4	860	1.2	7	2.8
SK-465	4.8	10400	7.3	20	448	57.3	35.4	1140	1.1	4	0.8
SK-466	2.1	6600	32.2	74	2090	16	99	1370	2.5	16	1
SK-467	1.6	2030	24.2	69	1430	7.5	82.1	2200	1.7	7	0.7
SK-468	2.1	16100	36.5	49	1860	17.7	49	1450	1.2	10	0.9
SK-469	3	5060	12.3	68	883	8420	40.2	1400	30.7	11	1.3
SK-470	3.1	4070	5.9	49	643	763	52.5	1380	2.6	15	1
SK-4/1	1.3	19900	4.9	231	593	19.4	30.9	860	0.4	28	0.9
SK-472	1.0	15300	0.2	10	420	20.6	47.7	2600	1.5	6	1.3
SK-473	1.1	17500	10.0	19	080	29.0	74.4	2090	0.0	16	1.6
SK-475	1.1	17200	13.5	20	986	18.9	66.7	830	1	10	1.0
SK-476	1.3	11700	9	40	668	12.8	51.3	440	0.5	13	1
SK-477	2.2	24000	11.5	18	746	56.5	49.4	750	0.9	7	1.3
SK-478	1.3	15800	15.4	33	1140	23.7	82.8	680	0.9	18	2
SK-479	2	4930	6.4	25	625	9.1	57.2	1310	1	15	1
SK-480	0.9	17400	15.2	31	1020	19.2	87.4	740	1.8	15	1.3
SK-481	1.6	597	0.9	17	91	16.4	12.5	930	0.4	1	0.3
SK-482	1.4	356	2.3	15	192	4.2	29.1	270	0.5	3	0.8
SK-483	1.2	405	1.7	8	209	3.5	20.6	140	0.6	2	0.6
SK-484	1.4	26200	19.4	9	1230	23.6	77.3	250	0.5	8	1.4
SK-485	2.8	20400	10.4	16	599	39.6	78.1	850	1.3	7	1.4
SK-486	2.6	19300	9.3	12	654	42	70	450	1.3	7	1.2
SK-487	2	19000	8.3	12	691	83.1	67	720	0.9	6	1.1
SK-488	1.6	9270	9.3	25	795	24.8	64.1	1690	1.6	8	0.8

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3M	IC3E	<i>IC3M</i>	IC3E	IC3M
SK-489	2.2	1980	18	47	1540	19.2	95.5	1380	2.9	16	0.7
SK-490	2.1	1580	12.7	31	1020	14.3	61.2	1470	1.4	9	0.7
SK-491	2.8	27900	42.9	67	2650	16.8	47.7	790	1.1	13	1
SK-492	2.8	10900	5.6	19	496	23.1	58.7	790	2	11	1
SK-493	3.5	23500	10.2	13	769	23.1	78.6	540	0.9	7	1.3
SK-494	1.6	21600	12	18	759	31	89.5	510	0.9	8	1.5
SK-495	1.6	24500	12.7	15	935	23.9	95.6	1070	0.8	11	1.7
SK-496	1.9	18900	12.3	18	1110	24.3	86.1	330	0.9	19	1.7
SK-497	1.6	15100	9.3	21	916	37.7	66.8	490	1.1	16	1.2
SK-498	1.3	19900	12.3	79	1230	29.2	71.4	360	0.8	22	1.2
SK-499	1.5	14600	9.4	85	985	24.9	60.7	430	1.3	18	0.9
SK-500	1.2	4920	5.1	21	529	7.2	40.4	1400	1.3	11	0.7
SK-501	1.1	1390	2.2	21	197	2.7	34.4	1570	0.7	3	0.7
SK-502	0.7	2630	2.7	17	262	2.1	40.8	1400	1.6	6	0.4
SK-503	2	405	2	14	165	4.1	32.9	410	1.7	3	0.6
SK-504	2	687	2.2	14	188	3.5	30.4	260	0.7	3	0.7
SK-505	3.8	2620	6.3	18	487	6.9	53.1	1090	1	4	0.9
SK-506	1.4	22000	9.1	14	638	43	68.6	550	1.1	7	1.2
SK-507	1.1	20400	8.4	16	617	34	57.5	600	1.1	7	1
SK-508	6	17500	8.9	17	697	54.6	69.8	510	1	7	1.1
SK-509	1.7	17700	7.9	14	573	31.1	61.7	820	1.1	1	1.3
SK-510	1.6	3130	22.1	54	1810	78.1	72.5	970	1.5	14	0.8
SK-011	2.8	2690	24.5	85 59	2130	114	95.8	1000	3	12	1
SK-512	2.3	6000	11.6	50	1380	51.4	99.1 74.7	1900	1.4	20	0.0
SK-513 SK-511	1.0	15300	67	10	568	24.4	82.2	1700	0.8	11	1.2
SK-514 SK-515	1.3	6270	4.2	13	409	7.4	25.2	430	0.0	4	0.6
SK-516	1.0	11000	6.7	40	668	20.9	83.5	400	0.7	13	1
SK-510 SK-517	1.7	10000	6.3	12	482	18.9	66	830	0.0	6	11
SK-518	1.9	14700	11.8	13	1040	15.4	87.2	480	0.9	18	1.7
SK-519	1.6	22600	12.6	19	1240	24.9	78.3	520	0.7	18	1.7
SK-520	0.7	9380	4.4	28	466	11.8	29.2	850	0.7	10	0.6
SK-521	0.9	7200	5.6	18	597	16.8	54.8	1130	1	12	0.6
SK-522	1.3	5550	9	27	872	12.7	87.1	2720	1.9	13	1.1
SK-523	0.9	4520	5	23	590	7.8	68.5	970	1.5	14	0.8
SK-524	0.5	3270	3.3	20	748	11.7	67.8	1210	0.7	10	0.6
SK-525	1.1	1310	6.3	7	595	10	36.6	1700	1.9	7	0.4
SK-526	0.7	573	3.9	9	401	1.2	22	1670	2	7	0.3
SK-527	1.5	1230	4.8	9	459	11.9	37.4	1220	1.7	6	0.5
SK-528	7.6	303	1.7	17	151	5.1	24.4	380	1.4	3	0.7
SK-529	1.3	1450	2.3	14	248	2.6	21.3	530	0.7	5	0.7
SK-530	1.5	5030	7.1	9	476	0.8	51.1	340	1.1	5	0.9
SK-531	7.1	773	4.9	11	367	4	23.3	1430	1.4	4	1.5
SK-532	1.3	11200	6.9	28	621	13.1	48	890	0.5	11	0.9
SK-533	1.1	7360	10.1	29	912	12.8	82.9	690	1.7	15	1.2
SK-534	1	5790	8.3	16	690	7.5	83.1	1090	1	11	1.1
SK-535	0.6	1650	1.7	11	355	0	41	1740	1.4	7	0.3
SK-536	1.2	575	3.6	8	384	2.4	24.4	1710	4.1	7	0.4
SK-537	1.7	890	13.5	11	1120	22.2	88.9	13600	5.8	13	0.5
SK-538	1.7	4470	16.6	43	619	2.6	94.9	380	2.1	6	0.9
SK-539	1.7	217	8.6	16	278	0	45.2	610	1.2	3	0.7
SK-540	1.9	563	2.4	15	101	0	16.9	1410	2.4	3	0.2
SK-541	2.8	2090	13.3	12	354	0	70.9	290	1.6	3	1.1
SK-542	2.6	1460	8.2	10	255	0	51.7	460	1.1	2	2.2
SK-543	0.8	5590	1.2	14	193	8.5	54.8	350	1.1	3	2.1
SK-544	0.9	20000	9.1	16	352	26.7	51.6	470	1./	5	1.3
SK-545	1.2	20200	10.6	11	327	43.6	59.2	370	1.2	4	1.8
SK-340	1.7	3840	19.7	40	1050	20.0	91.1	950	1.9	ð 11	0.9
SK-547	1.3	2200	14.4	34 26	1050	13.3	00.8 60.4	1040	0.0	0	0.7
SK-540	1.0	1520	10.7	30	1050	7.ŏ	09.4 56	1320	0.9	0 10	0.7
0//-049	4	1550	10.7	00	1100	29.2	50	1400	۷.۱	19	0.0

KAVOSH KANSAR	Мо	Na	Nb	Ni	Р	Pb	Rb	S	Sb	Sc	Sn
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	10	0.5	2	5	0.2	0.1	50	0.1	1	0.2
METHOD	IC3M	IC3E	IC3M	IC3E	IC3E	IC3E	IC3M	IC3E	IC3M	IC3E	IC3M
SK-550	1.9	1980	33.5	61	2020	12.2	67.7	1170	1.6	12	0.8
SK-551	2.3	4510	4.5	18	607	27	34	640	1.7	7	0.6
SK-552	1.5	4720	3.8	10	435	1.8	29.8	80	0.7	5	0.6
SK-553	1.6	3910	2.6	20	199	2.6	14.1	800	0.8	3	0.5
SK-554	1.3	2940	7.9	11	197	0	80.5	490	1.1	4	1.2
SK-555	1.4	4110	7	23	356	7.8	61.9	650	2.7	9	1.3
SK-556	1.2	16100	7.3	16	786	11.1	49.9	1180	1.4	15	1
SK-557	1.6	23900	11.8	50	1140	25.7	59.1	610	0.5	16	1.4
SK-558	1.8	15200	12.1	12	524	5.9	73.3	190	0.4	9	1.5
SK-559	1.1	15100	8.1	10	398	5.3	63.5	430	0.7	7	1.1
SK-560	1	9910	8.3	72	949	19	65.8	190	1.9	17	1
SK-561	0.7	10400	7.5	15	833	4	69.2	200	0.8	12	1
SK-562	0.5	8360	6.8	3	750	8.2	63.2	650	0.7	11	0.8
SK-563	1.9	5100	12.6	6	1030	3.1	76.9	1680	2.3	10	0.7
SK-564	1.2	3470	8.2	7	765	3.5	55.9	1290	1.6	8	0.5
SK-565	1.6	11500	14.3	16	937	9	83.6	770	1.8	10	1.1
SK-566	1.5	16500	15.2	12	507	3.3	87.3	210	1.5	6	1.3
SK-567	1.3	15800	13.1	30	885	17.4	68.9	650	0.9	9	1.1
SK-568	1.4	4360	1.4	14	175	4.1	13.6	490	0.7	3	0.5
SK-569	1.2	11100	8.8	6	276	2.6	61.2	130	0.9	7	1.2
SK-570	2.2	26400	13.5	11	555	7.4	80.8	210	0.4	9	2
SK-571	1.6	29200	12.6	11	621	8.7	70.7	120	0.3	12	1.7
SK-572	1.4	17600	12.7	53	545	7.7	46.9	140	0.7	12	1.3
SK-573	1.4	11700	10.4	77	1000	11.4	57	390	0.9	11	0.9
SK-574	1.5	8710	18.4	31	2310	25.2	114	890	1.8	11	1.1
SK-575	1.1	20900	12.3	19	904	11.1	115	560	1.6	6	1.1
SK-576	1	18800	13.7	49	1830	21.2	85.7	490	0.9	12	1.1
SK-577	0.9	21900	13.8	50	1890	27	111	400	1.5	11	1.2
SK-578	1.2	25500	12.7	40	1580	38.3	93.5	450	1.7	9	1.1
SK-579	0.5	30000	13.1	25	1070	8.4	125	670	1.3	6	1.3
SK-580	0.9	10800	9.8	45	1940	58.3	74.9	1620	1.4	9	1
SK-581	0.8	19600	7.4	65	1280	46.1	56.9	730	0.9	9	1
SK-582	0.9	3750	7.8	22	710	4.6	94.5	1180	1.2	6	1
SK-583	1.8	11100	6.1	16	356	38.2	53.6	520	1.1	3	0.9
SK-584	1.2	8350	14.9	19	1220	20.9	118	810	1.2	7	1.3
SK-585	1.7	5200	5.7	16	528	21.8	55.1	540	1.1	3	0.6
SK-586	2.1	1620	2.8	12	172	2	28.7	270	0.9	1	0.6
SK-587	1.3	2050	5	13	440	2.4	51.4	290	1	4	0.6
SK-588	1.5	4730	4.4	32	659	21.5	30.1	840	1.1	6	0.7
SK-589	13.2	1170	5.9	19	842	13.6	34.5	3560	2.8	6	0.5
SK-590	1.1	9460	4.2	106	862	24.1	68.8	1000	0.5	14	0.8
SK-591	0.5	7800	4.5	78	451	3.9	54	460	0.2	12	0.8
SK-592	1.4	10900	14.1	36	1320	32.9	145	1540	1.1	12	2.1
SK-593	0.5	2540	5.9	8	483	8	76.8	880	5.1	6	1.7
SK-594	1.1	9470	7.1	14	1290	22.9	66.9	1430	1.2	16	1
SK-595	1.2	26400	11.7	29	2310	38.3	68.5	780	0.5	21	1.4
SK-596	1.2	32600	12.7	39	2270	31.4	79.5	920	0.3	19	1.6
SK-597	1.1	30100	11.3	40	2380	44.1	71.4	340	0.5	22	1.5
SK-598	0.6	18300	10.1	71	1850	40.5	83	550	0.9	19	1.3
SK-599	0.5	7810	5.4	55	976	23.3	41.1	1410	1	11	0.8
SK-600	0.7	16300	12.4	58	2140	30	128	480	2.3	13	1.3
SK-601	0.4	21900	10.2	39	1880	20.2	91.5	800	1.3	12	1.1
SK-602	0.6	16800	11.7	34	2050	26.4	121	870	2.1	13	1.1
SK-603	0.6	22700	12.9	43	2050	31.1	104	530	2	12	1.3
SK-604	0.6	28200	12.8	50	2020	28.4	92	310	2.3	12	1.2
SK-605	1.1	30100	11.5	40	2090	16.4	80.8	780	1.2	13	1.2
	· ·	1		1	-	1		1	I	-	i

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	ІСЗМ	IC3E	IC3M	ІСЗМ	IC3E	ІСЗМ	ІС3М	ІСЗМ	IC3E
SK-1	435	0	4.03	1950	0.3	2.33	53	0.9	13.7	111	46
SK-2	603	0	5.07	2930	0.3	1.51	71	1.3	11.1	110	36
SK-3	348	0	3.22	1780	0.3	1.22	55	0.9	8.36	4420	30
SK-4	80	0	0.58	200	0	0.3	14	0.5	3.11	41	5
SK-5	79.5	0	1.65	260	0	0.71	20	0.3	9.02	36.4	8
SK-6	257	0	1.79	600	0.2	1.67	93	0.5	4.65	31	16
SK-7	191	0	2.19	741	0.2	1.23	25	0.5	7.87	920	14
SK-8	415	0	3.05	1570	0.3	1.68	47	1.2	10.9	809	41
SK-9	671	0	6.75	3320	0.4	1.77	79	1.6	13	82.7	33
SK-10	552	0	3.89	1870	0.3	1.52	49	1	10.8	64	25
SK-11	411	0	3.69	2610	0.3	1.55	68	0.9	15.9	80.4	51
SK-12	475	0	7.07	3640	0.5	1.8	79	1.6	14.3	107	33
SK-13	430	0	3.87	4490	0.3	1.38	114	1.1	16.7	45.9	107
SK-14	399	0	4.74	6000	0.5	1.69	162	1.4	17.6	60.9	139
SK-15	427	0	2.94	1480	0.3	1.49	46	1	8.11	336	26
SK-16	580	0	1.38	822	0.3	1.14	26	0.3	6.65	26.1	14
SK-17	418	0	1.58	1380	0.2	1.17	44	0.4	9.61	30.9	26
SK-18	457	0	2.14	1140	0.2	1.35	39	0.6	9.91	82.4	19
SK-19	429	0	5.69	4970	0.4	1.41	155	1.1	12.6	117	67
SK-20	241	0	7.25	4750	0.6	1.54	106	1.5	16.1	48.5	36
SK-21	353	0	4.9	2270	0.4	2.12	61	1.4	13	35	32
SK-22	229	0	6.75	3190	0.5	2.12	68	1.8	17.7	52.4	22
SK-23	421	0	3.53	3020	0.1	1./1	81	0.6	11	145	56
SK-24	335	0	1.71	733	0.1	1.47	21	0.4	10.2	45.6	14
SK-20	240	0	1.23	904	0.1	0.03	47	0.0	6.02	47.4	12
SK-20	92.9	0	2.0	1140	0.2	1 40	47 71	0.7	5.67	20.1	42
SK-27	105	02	2.45	1200	0.2	1.49	11	0.9	5.07	39.1	29
SK-20	84.6	0.2	2.45	502	0.2	1.03	44 73	0.0	0.44	42 21.7	- 34 15
SK-30	282	0	1.05	907	0.2	0.88	37	0.5	7.61	21.7	16
SK-31	394	0	2.24	918	0.1	1.39	58	0.0	7.01	27.2	14
SK-32	376	0	1.61	556	0.2	1.58	51	0.5	6.25	7610	11
SK-33	348	0	2.94	1960	0.2	1.8	75	0.7	10.2	61.1	28
SK-34	641	0	6.1	3660	0.4	1.87	99	1.4	13.4	67	53
SK-35	611	0	6.2	3670	0.4	2.03	90	1.5	12	69.7	44
SK-36	445	0	5.12	5880	0.5	1.89	141	2.2	16	55.6	141
SK-37	405	0	5.29	5270	0.6	1.96	127	3.4	15.4	43.7	141
SK-38	331	0	2.48	2620	0.2	1.51	72	1	10.5	28.4	61
SK-39	529	0	2.25	911	0.3	1.46	31	0.6	6.76	29.2	17
SK-40	577	0	4.38	1790	0.5	1.72	42	1.4	8.59	31.5	24
SK-41	292	0	8.45	4210	0.7	2.73	81	2.4	13.9	60.2	47
SK-42	503	0	7.94	4660	0.6	1.46	94	2.2	13.4	72.1	28
SK-43	350	0	6.94	6100	0.6	1.91	144	1.7	12.2	50.9	60
SK-44	384	0	6.8	4510	0.6	2	114	2.1	12.6	48.5	49
SK-45	575	0	0.73	308	0	0.6	12	0.2	9.64	108	5
SK-46	554	0	0.72	310	0.4	0.63	12	0.4	5.97	158	6
SK-47	685	0	1	429	0.2	0.72	15	0.3	7.58	41.6	7
SK-48	457	0	0.87	388	0	0.7	24	0.2	6.72	23	10
SK-49	287	0	2.17	630	0.2	1.02	50	0.3	7.06	30.5	19
SK-50	387	0	1.21	250	0	0.97	33	0.3	7.7	18.8	10
SK-51	162	0	2.24	380	0.1	0.82	34	0.2	5.86	29.4	15
SK-52	78.1	0	1.79	445	0.1	1.54	43	0.3	4.8	24.2	14
SK-53	99.4	0.3	1.92	696	0.2	1.16	44	0.3	5.26	26	15
SK-94	147	0.3	1.98	617	0.3	4.//	147	1.1	6.43	25.6	21
SK-55	662	0	1.48	936	0.2	1.13	43	0.4	6.33	20.7	12
SA-30	122	0.3	1.12	2740	0.3	3.28	110	0.9	0.0	32.1	19 E1
SK-3/	205	0	2.5	3/10	0.4	1.17	119	0.5	11.6	44	51
SK-50	000	0	CO.O	3070	0.4	2.00	106	1.2	10.2	00.1 AA 4	50
SK-60	621	0	4.21 2.76	1710	0.3	2.02	50	1.0	14.9	61 0	10
SK-61	471	0	3.10	1/10	0.3	2.33	59	0.0	14.3	67.9	10
5.1.01	I 7/1	v	0.00	1700	0.2	2.23	57	0.0	12.3	51.0	10

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт	ррт	ррт	ррт						
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3E
SK-62	638	0	2.23	2430	0.2	1.11	107	0.4	9.09	24	19
SK-63	530	0	3.09	1740	0.3	1.61	61	0.9	11	14.6	21
SK-64	639	0	7.61	3650	0.4	2.32	101	1.4	14.2	41.6	38
SK-65	408	0	9.84	4030	0.5	2.38	115	1.4	17.2	41.7	25
SK-66	369	0	9.85	4840	0.5	2.72	111	1.7	15	46.1	44
SK-67	658	0	0.67	252	0	0.7	10	0.1	8.13	156	0
SK-68	1170	0	1.21	525	0.1	0.95	19	0.2	6.32	10.6	8
SK-69	576	0	0.96	426	0	1.09	14	0.1	4.99	10.2	7
SK-70	94.1	0	2.76	651	0	1.07	31	0.2	5.51	11.9	17
SK-71	488	0	2.67	655	0	1 23	40	0.2	5.39	17.6	17
SK-72	307	0	3.32	472	0.2	1 27	64	0.4	6.02	20.4	23
SK-73	95.6	0	1 49	254	0.2	0.52	14	0.3	3.48	86	9
SK-74	139	0	1.10	585	0.2	1 94	147	0.5	3.87	9.5	11
SK-75	79	0	2 27	560	0.2	2 78	171	0.0	53	23.2	۰. ۹
SK-76	104	03	3.05	675	0.5	2.70	144	0.5	3.98	11.3	21
SK-70 SK-77	/3.2	0.0	3 31	810	0.0	1 01	70	0.0	4 29	13.4	21
SK-79		0.4	2 72	844	0.2	2.22	76	0.4	4.23	10.4	20
SK-70	5/18	0.4	3.03	4340	0.2	1 33	110	0.0	8 / 9	10.1	61
SK-80	535	0	1 81	1800	0.2	1.00	52	0.7	5 50	15.4	26
SK-81	151	0	3.02	1870	0.1	1.01	50	0.4	9.09 8.01	35.9	20
SK-01	404	0	3.30	1100	0.3	1.04	59	0.0	0.21	10.6	30
SK-02	200	0	J.4	552	0.2	1.44	25	0.5	9.4	11.0	22
SK-03	202	0	1.40	2200	0	1.1	30	0.3	0.40	11.0	9
SK-04	200	0	5.00	2790	0.3	1.04	00	0.3	0.03	20.0	40
SK-00	100	0	0.00	1510	0.3	2.44	00 70	1.1	0.10	14.3	52
SK-00	520	0.4	0.03	2130	0.5	2.40	73	2.1	0.79	10.0	20
SK-8/	538	0	7.06	2590	0.4	2.44	84	1.2	9.73	45.4	30
SK-88	304	0	3.49	2850	0.3	1.35	103	1.2	8.12	9.8	42
SK-89	747	0	2.22	1780	0.2	0.84	53	0.8	9.76	68.5	25
SK-90	544	0	4.62	2690	0.8	1.74	74	1.2	15	149	30
SK-91	449	0	2.9	3560	0.2	1.02	106	0.8	14	262	50
SK-92	641	0	7.53	4070	0.4	1.93	90	1.7	19.2	78.3	38
SK-93	234	0	5.05	3170	0.4	2.21	76	1.2	27.7	55.2	29
SK-94	154	0	1.91	//6	0	0.8	29	0.2	8.33	62.2	14
SK-95	182	0	2.05	1160	0.1	0.96	42	0.4	11.9	87.9	16
SK-96	365	0	3.07	1100	0.4	4.53	159	0.6	15.1	84.3	23
SK-97	64.3	0	1.46	529	0.3	1.5	153	0.4	6.32	10.1	13
SK-98	25.9	0	1.29	403	0.1	1.17	68	0.2	4.19	10.4	11
SK-99	45.6	0	2.46	784	0.1	0.97	39	0.3	0.34	20.3	19
SK-100	48.7	0	2.22	773	0.2	1.1	52	0.3	6.77	14.8	21
SK-101	363	0	2.05	2250	0.2	0.99	61	0.3	11	34.5	44
SK-102	415	0	3.47	1590	0.2	1.11	37	1.3	11.6	1060	34
SK-103	700	0	1.55	070	0.3	0.84	23	0.4	8.09	428	12
SK-104	622	0	2.11	970	0.3	1.29	31	0.4	10	5/0	19
SK-100	023	0	1.40	529	0	0.69	19	0.1	13.3	10.0	12
SK-100	2/5	0	1.09	440	0	0.52	10	0.1	10.0	10.3	9
SK-107	112	0	0.91	225	0	0.4	10	0	11.8	91.6	5
SK-100	409	0	0.07	372	0	1.00	14	0	9.93	27.5	0
SK-109	220	0	1.04	749	0	0.07	40	0.2	12.9	24.7	13
SK-110	203	0	1.00	140	0	0.04	20	0	0.20	F2 4	13
SK-112	92.9	0	2.40	1000	0.1	1.10	01	0.2	0.00	33.1	20
SK-112	103	0	1.78	590	0.2	1.44	CO	0.3	0.90	10.4	10
SK-113	129	0	1.71	472	0.2	1.30	02	0.2	0.00	124	13
SK-114	00	0	2.14	698	0.2	1.1	81	0.3	5.03	128	14
SK-115	26.1	0	1.65	5/5	0.1	0.64	26	0.2	4.84	83.4	13
SK-110	/6.2	0	1.33	423	0.1	0.67	24	0.2	6.84	32.7	10
SK-117	538	0	1.19	5//	0.1	0.63	1/	0.3	6.5	55.4	10
SK-118	640	0	2.01	708	0.2	1.13	25	0.5	7.8	134	13
SK-119	706	0	2.28	733	0.1	1.07	26	0.5	8.92	61.9	13
SK-120	672	0	2.89	934	0.2	1.19	33	0.7	10.5	242	19
SK-121	488	0	1.36	563	0.1	0.97	16	0.4	9.26	1420	8
SK-122	351	0	1.61	631	0	1.11	21	0.6	7.96	415	11

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3E
SK-123	374	0	1.43	529	0.1	0.86	23	0.3	7.48	2050	9
SK-124	751	0	2.22	2540	0.1	0.83	65	0.4	12	175	47
SK-125	196	0	2.46	1230	0.2	1.05	30	1	10.8	1380	21
SK-126	525	0	4.07	2080	0.3	1.41	53	1.4	13.4	81.3	31
SK-127	691	0	4.87	2980	0.3	1.42	76	1.1	15.2	79.8	43
SK-128	719	0	3.65	1880	0.2	1.41	51	1	11.9	2250	27
SK-129	591	0	3.96	2330	0.3	1.27	68	1.3	14.6	70.1	37
SK-130	516	0	2.6	1290	0.1	1.09	42	0.7	11.6	141	24
SK-131	326	0	4 11	2050	0.2	21	55	0.9	13.9	97.4	.34
SK-132	310	0	4.54	2130	0.2	1.54	55	1.1	15.6	01.8	33
SK-133	210	0	33	2180	0.2	1 15	60	1.1	27.2	70.4	26
SK-134	57.6	0	2.5	676	0.0	0.80	38	0.7	6.13	/0.4	10
SK-135	53.6	0	1.5	475	0.2	1 31	62	0.8	4.52	18.6	14
SK-135 SK-136	62.2	0	1.0	475	0.2	1.51	65	0.0	6.21	37.7	14
SK-127	32.8	0	2.49	862	0.2	0.03	40	0.0	5.27	37.5	17
SK-137	47.5	0	1 07	529	0.2	0.00	-10	0.0	1 17	27.0	15
SK-130	47.5	0	2.07	2050	0.2	1.5	70	0.5	9.25	104	54
SK-139	160	0	2.97	1600	0.3	0.00	70 52	0.0	6.01	104	20
SK-140	707	0	2.29	077	0.2	0.00	22	0.5	0.91	140 515	29
SK-141	707 554	0	2.09	977	0.3	1.47	33	0.9	9.51	212	19
SK-142	304	0	3.52	1090	0.3	1.73	39	0.9	0.04	1/5	21
SK-143	491	0	3.19	000	0.2	1.35	37	0.0	1.47	1030	10
SK-144	354	0	0.72	270	0	0.64	11	0.3	4.98	288	0
SK-145	554	0	1.24	483	0.1	0.84	18	0.2	5.79	3360	8
SK-146	459	0	1.52	485	0.1	1.33	22	0.5	6.14	1130	/
SK-147	282	0	0.63	213	0	0.89	11	0.1	4.57	10900	0
SK-148	1960	0	0.59	470	0.2	1.13	20	0	3.1	9840	8
SK-149	253	0	1.51	828	0.2	0.7	37	0.6	10.6	109	10
SK-150	460	0	0.77	280	0.1	0.46	10	0.4	8.8	15	0
SK-151	395	0	2.08	768	0.3	0.92	19	0.5	8.94	41.4	14
SK-152	73.2	0	1.23	305	0	0.62	25	0.2	8.43	49.2	6
SK-153	592	0	0.86	361	0.1	0.52	12	0.3	4.18	7.8	-
SK-154	37	0	1.25	303	0.2	1.98	72	0.7	3.32	7.4	7
SK-155	39.7	0	1.3	307	0.1	0.87	26	0.3	4.26	17.3	8
SK-156	63.3	0	1.75	481	0.2	1.27	53	0.4	5.22	21.1	11
SK-157	21.1	0	1.94	576	0.1	1.23	39	0.5	3.49	10.2	14
SK-158	62.8	0	1.21	295	0.2	0.77	51	0.4	5.86	52.2	7
SK-159	110	0	2.71	634	0.2	1.51	73	0.6	7.29	39.2	16
SK-160	623	0	1.2	466	0.2	0.59	16	0.4	5.2	113	8
SK-161	479	0	3.08	965	0.2	1.35	32	0.8	8.39	148	20
SK-162	371	0	1.22	429	0.1	1.73	22	0.4	3.58	573	8
SK-163	329	0	1.7	645	0.2	1.23	26	0.4	6.01	532	9
SK-164	2550	0	0.35	445	0.2	1.21	20	0	3.39	15400	6
SK-165	2610	0	0.38	313	0.1	1.14	18	0	3.6	35700	0
SK-166	747	0	1.67	954	0.2	1.55	34	0.5	6.17	974	15
SK-167	319	0	1.48	542	0.2	1.49	25	0.5	5.24	1120	y
SK-168	478	0	1.52	517	0.1	1.41	27	0.4	5.44	3390	10
SK-169	263	0	1.75	660	0.2	1.33	24	1	8.71	583	11
SK-170	301	0	2.89	1250	0.2	1.5	32	1	10.1	1520	19
SK-171	208	0	2.18	888	0.2	1.63	27	0.8	9.7	42.8	15
SK-172	151	0	2.61	1100	0.2	1.71	29	0.3	8.81	172	18
SK-173	491	0	3.02	1800	0.2	1.33	55	1.1	13	112	29
SK-174	605	0	3.64	1730	0.1	1.25	52	0.6	8.35	129	30
SK-175	458	0	2.78	1320	0.2	3.26	43	0.9	10	128	20
SK-176	321	0	1.62	702	0.2	2.69	30	0.4	18.6	44.7	10
SK-177	495	0	1.55	1350	0	0.46	59	0.4	13	179	13
SK-178	748	0	2.97	676	0.2	0.98	33	0.5	10.7	103	10
SK-179	304	0	2.55	576	0.2	1.8	35	0.5	11.9	447	10
SK-180	338	0	1.66	410	0.1	1.37	26	0.8	7.76	289	6
SK-181	1270	0	1.82	377	0.2	1.28	37	0.4	7.99	3850	6
SK-182	2080	0	1.42	432	0.3	1.83	27	0.7	6.15	2580	9
SK-183	182	0	5.97	1660	0.5	1.77	51	1.4	11.7	45.5	37

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3E
SK-184	345	0	1.57	552	0.2	0.87	22	0.4	12.8	176	9
SK-185	573	0	2.17	348	0.2	1.07	20	0.4	11.9	395	6
SK-186	153	0	1.12	252	0.2	1.52	66	0.3	9.26	82.5	9
SK-187	41.4	0	4.11	900	0.5	0.9	53	0.5	5.64	41.3	18
SK-188	79.3	0	2.66	481	0.2	1.01	51	0.4	4 41	48.3	15
SK-189	449	0	2 23	725	0.2	1 24	47	0.5	7.36	51.7	13
SK-190	520	0	2.20	492	0.2	1.21	50	0.0	10.2	90.7	8
SK-191	437	0	3.09	821	0.2	1 14	29	0.6	10.5	148	12
SK-102	310	0	2.16	504	0.2	21	20	0.0	5 99	1830	9
SK-192	1220	0	1.05	249	0.2	1.0	20	0.4	5.33	940	6
SK-195	1220	0	2.21	101	0.2	1.9	20	0.3	9.04	246	10
SK-194	6740	0	0.71	212	0.2	1.05	10	0.4	5.07	240	6
SK-195	225	0	1.20	200	0.1	0.76	10	0.4	7.69	109	6
SK-190	254	0	1.20	400	0.1	1.2	10	0.3	12.5	271	0
SK-197	204	0	1.0	400 501	0.1	0.05	10	0.5	10.0	2/1	9
SK-198	197	0	2.52	301	0.1	0.95	21	0.5	10.9	94.5	10
SK-199	236	0	2.92	/16	0.1	1.2	23	0.4	15.3	27.8	13
SK-200	178	0	4.89	1750	0.2	1.33	48	1.5	13.8	61	38
SK-201	399	0	2.26	848	0.1	1.12	18	0.8	7.3	3860	11
SK-202	156	0	2.84	788	0.1	0.7	25	0.8	14.2	83.8	15
SK-203	715	0	3.37	1580	0.2	0.94	51	1	17	145	13
SK-204	159	0	8.57	2670	0.8	2.2	80	1.1	22.8	49.2	27
SK-205	739	0	3.29	1680	0.3	0.9	56	1	9.35	269	15
SK-206	413	0	2.42	440	0.8	1.2	35	0.6	8.94	36.5	9
SK-207	215	0	2.19	749	0.2	0.73	20	0.4	10.3	16.5	14
SK-208	303	0	5.76	2380	0.5	1.45	63	1.1	15.4	102	40
SK-209	703	0	4.89	1550	0.3	1.53	46	1.1	10.5	64.4	31
SK-210	338	0	3.91	1250	0.4	2.28	48	9.8	10.4	856	24
SK-211	480	0	2.63	563	0.2	0.97	24	0.4	8.51	104	11
SK-212	365	0	0.71	197	0.1	1.18	13	2.6	3.84	580	0
SK-213	433	0	1.33	274	0.1	1.95	20	2.7	5.14	109	6
SK-214	517	0	1.54	492	0.2	1.14	22	0.5	6.73	85.3	6
SK-215	474	0	1.89	587	0.2	1.11	24	0.6	8.8	217	8
SK-216	262	0	2.56	603	0.2	1.29	27	0.5	10.6	30.1	12
SK-217	138	0	1.52	303	0.1	0.68	33	0.3	9.15	12.4	7
SK-218	159	0	2.02	428	0.1	1.08	20	0.4	10.9	12.2	9
SK-219	188	0	3.24	725	0.2	1.01	24	0.5	12	19	13
SK-220	348	0	5.16	1480	0.2	1.28	57	1.2	13.1	476	40
SK-221	253	0	4.75	2090	0.2	1.62	40	1.2	14.9	61.5	41
SK-222	313	0	2.02	863	0.2	1.98	26	0.7	7.39	4930	13
SK-223	140	0	3.96	1720	0.1	1.54	27	1.3	14.7	25.4	29
SK-224	658	0	4.4	1830	0.2	1.71	47	1	12.6	199	35
SK-225	316	0	1.2	269	0	0.46	6	0.3	7.42	30.1	11
SK-226	438	0	7.19	3230	0.4	1.88	68	1.5	17.5	123	46
SK-227	1760	0	1.55	1490	0.3	0.87	47	0.7	10.7	50.9	39
SK-228	1430	0	1.46	1760	0.2	1.02	47	1.1	16	42.8	32
SK-229	670	0	2.12	822	0.2	1.34	29	0.6	12.3	182	16
SK-230	759	0	1.57	605	0.1	0.72	21	0.5	8.4	502	13
SK-231	766	0	1.56	556	0.2	0.97	19	2	7.79	248	12
SK-232	469	0	2.9	3460	0.2	1.19	92	0.5	14.4	200	65
SK-233	399	0	2.02	981	0.2	1.15	27	0.4	8.95	65.3	16
SK-234	384	0	1.09	474	0.1	0.43	14	0.4	5.26	77.3	8
SK-235	527	0	2.31	876	0.2	1.4	28	0.4	8.81	52.4	16
SK-236	245	0	4.08	2880	0.2	2.62	54	0.7	17.4	57.1	43
SK-237	213	0	3.65	1650	0.1	1.34	30	0.7	15.4	36.9	26
SK-238	180	0	4.78	1920	0.2	1.49	39	0.8	15.8	45.2	35
SK-239	265	0	5.14	2070	0.2	2.71	34	1.1	17.3	40.2	38
SK-240	252	0	3.45	1490	0.1	1.5	25	0.6	14.1	31.5	26
SK-241	267	0	6.3	2660	0.3	2.07	52	1.3	16.5	3320	59
SK-242	377	0	5.07	2250	0.2	1.35	45	1.1	13.5	107	55
SK-243	346	0	7.12	4320	0.3	1.73	78	2.4	15	59	99
SK-244	195	0	3.78	1760	0.1	1.64	29	1.8	14	23.5	29
		-	··· •								

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3E
SK-245	216	0	4.98	2060	0.2	1.91	38	1.9	15.8	54.5	37
SK-246	471	0	4.51	1980	0.3	1.91	49	1	16.5	265	27
SK-247	366	0	0.96	418	0	0.57	14	0.3	5.67	50.5	6
SK-248	2140	0	2.48	2500	0.4	1.1	54	1.1	13.3	50.4	77
SK-249	2020	0	0.57	1110	0.2	0.88	41	0.7	10.1	44.3	28
SK-250	10200	0	6.03	2750	0.4	3.1	81	1.4	14.1	76.2	69
SK-251	618	0	1.13	396	0.3	1	17	0.8	8.76	197	9
SK-252	474	0	2.12	643	0.1	1.41	29	0.5	11.2	54.1	12
SK-253	469	0	1.42	574	0.1	0.86	21	0.4	7.32	73	10
SK-254	125	0	2 59	1220	0.1	1	23	0.6	12.1	49.2	20
SK-255	208	0	2.33	1020	0	1.02	24	0.6	10	53.6	18
SK-256	165	0	3.67	1940	01	1.65	29	0.6	15.9	38.6	30
SK-257	178	0	3.42	1590	0	1.00	26	0.5	13.7	30.9	26
SK-258	297	0	4 24	1740	0.4	1.59	40	1.5	12.7	2220	31
SK-250	537	0	6.34	2780	0.5	1.00	61	1.0	15.7	109	44
SK-260	326	0	5 55	2350	0.0	1.70	10	1.7	10.7	323	54
SK-261	548	0	1.00	2470	0.4	1.30	+3 63	1.0	12.9	103	36
SK-267	406	0	1 27	702	0.5	0.78	18	0.4	5 33	20800	11
SK-263	/01	0	1.27	0/0	0.1	1.05	21	0.4	0.00	771	1/
SK-264	431 A15	0	1.73	1610	0.1	1.03	40	0.0	3.09 1/1 1	100	25
SK-204	415	0	2.01	1100	0.3	1.74	40	0.0	10.5	433	15
SK-205	410	0	3.30	1400	0.3	1.14	39	0.0	10.5	21.1	15
SK-200	102	0	4.07	1490	0.2	1.44	32	1.0	11.3	21.1	21
SK-207	500	0	4.01	2020	0.3	1.74	42	1.7	12.5	15.7	03
SK-200	000	0	2.37	1040	0.2	0.94	50	0.5	9.91	20	10
SK-209	206	0	4.00	2700	0.0	1.41	00	1.5	19.7	43.5	40
SK-270	306	0	2.85	1130	0.2	1.15	28	0.6	1.11	3660	19
SK-2/1	080	0	3.34	1570	0.4	1.1	41	1	9.33	51.4	22
SK-2/2	425	0	1.09	172	0	1.53	17	2.8	5.87	174	0
SK-2/3	409	0	1.95	591	0.1	1.21	31	0.5	7.11	51.8	10
SK-2/4	135	0	2.35	703	0	0.88	23	0.3	8.29	23	14
SK-2/5	202	0	2.51	839	0	1.15	22	0.3	10.4	19.5	16
SK-2/6	317	0	4.52	1750	0.3	1.32	44	0.7	14	46.2	27
SK-2//	292	0	8.29	2980	0.6	1.71	81	0.8	14	150	47
SK-278	278	0	4.65	1500	0.2	1.47	38	0.6	12.4	54.6	26
SK-279	219	0	3.06	1220	0.2	1.05	39	0.5	11	44.6	18
SK-280	231	0	4.25	1410	0.2	1.5	33	0.8	13	34	24
SK-281	410	0	6.2	2840	0.3	1.95	64	1.4	15.7	93.8	63
SK-282	434	0	3.73	1750	0.3	1.98	56	0.8	15.4	95.1	29
SK-283	429	0	4.36	1300	0.3	1.29	43	0.7	11.2	46.1	22
SK-284	404	0	1.73	822	0.2	1.6	24	0.6	3.95	63300	11
SK-285	401	0	3.42	1060	0.2	0.92	45	0.9	9.98	176	16
SK-280	508	0	1.14	370	0.1	1.01	17	0.3	5.57	21700	1
SK-287	97.8	0	3.08	1160	0.2	1.06	31	0.9	12.2	82.0	17
SK-288	305	0	3.54	1620	0.1	1.27	41	0.8	10.9	44.7	47
SK-289	754	0	1.99	000	0.2	0.99	31	0.0	0.27	71.5	12
SK-290	440	0	1.41	423	0.2	1.08	22	1.9	7.5	258	8
SK-291	3/1	0	3.21	1170	0.2	1.34	28	0.5	13.7	76.2	20
SK-292	244	0	7.19	3990	0.7	1.71	73	4	21	40.5	61
SK-293	744	0	7.38	3450	0.6	1.00	76	1.3	11.5	45.5	54
SK-294	711	0	2.07	715	0.7	1.50	35	0.7	8.78	507	14
SK-295	962	0	1.77	583	0.2	1.64	28	1.1	5.53	299	12
SK-290	153	0	3.45	1320	0.2	1.17	31	0.7	10.7	19.9	21
SK-297	434	0	3.79	1810	0.4	1.43	58	0.9	15	14/	24
SK-298	241	0	2.52	761	0.1	1.19	23	0.5	9.85	23.6	13
SK-299	295	0	2.3	753	0.1	0.85	23	0.7	10.2	19.2	14
SK-300	215	0	2.1	669	0.1	0.8	25	0.4	9.39	17	13
SK-301	253	0	4.28	1400	0.4	1.13	39	1	10.4	26.7	24
SK-302	229	0	3.96	1710	0.3	1.09	34	1	9.09	29.6	25
SK-303	406	0	7.85	3900	0.6	1.4	81	1	12	50.8	38
SK-304	313	0	7.25	3200	0.6	1.91	72	1.1	15.4	60	36
SK-305	219	0	3.34	1280	0.2	1.85	32	1.1	11.8	22.6	23

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт	ррт	ррт	ррт						
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3E
SK-306	244	0	4.27	1540	0.2	1.31	39	1	10.3	24.5	29
SK-307	299	0	3.8	1420	0.2	1.17	35	1	10	49.4	23
SK-308	588	0	2.45	817	0.2	0.97	32	0.6	7.71	53.5	14
SK-309	324	0	2.73	901	0.3	0.81	29	1.2	11	45.6	14
SK-310	498	0	1.84	613	0.2	0.87	28	0.7	7.42	180	10
SK-311	143	0	2.81	874	0.2	0.96	30	0.7	11.3	14.4	18
SK-312	380	0	2.39	1180	0.2	1.06	28	0.8	12	14.2	31
SK-313	292	0	1.65	527	0.4	1.09	29	2.6	7.53	665	12
SK-314	621	0	5.33	2100	0.4	1.69	59	1.3	12	562	38
SK-315	238	0	2.93	1010	0.2	1.01	25	0.8	11.8	20.7	18
SK-316	498	0	5.9	2270	0.4	1.59	61	1.5	13	116	.34
SK-317	139	0	6.69	4120	1 1	1 73	84	2.9	9.32	44.3	46
SK-318	480	0	6.68	2970	0.6	1.84	83	1.0	14.3	121	.39
SK-319	414	0	4 22	1700	0.0	1.3	51	0.9	13.9	160	25
SK-320	240	0	2.65	849	0.1	0.8	22	0.8	13.3	10.6	15
SK-321	283	0	2.00	505	0.1	0.65	10	0.5	10.0	11.1	11
SK-321	140	0	2.10	585	0.1	1.21	26	0.0	8 35	22.2	14
SK-322	155	0	1.21	1100	0.1	1.01	20	0.0	10.6	17.8	21
SK-323	194	0	1.82	551	0.2	0.86	10	0.9	7.64	5.7	12
SK-324	1/18	0	3.57	1240	0.1	1 13	20	0.0	10.9	15.5	22
SK-325	264	0	1.33	1/30	0.2	1.13	42	0.0	13.3	30.6	23
SK-320	204	0	4.55	1960	0.3	1.09	42	0.0	11.6	27.2	20
SK-327	204	0	4.07	1000	0.3	1.43	42	0.0	10.0	27.3	20
SK-320	127	0	3.13	1010	0.2	1.00	30	0.0	10.2	20.2	21
SK-329	107	0	3.00	1460	0.2	1.01	27	0.9	12.0	17.6	22
SK-330	207	0	4.33	1400	0.2	1.77	37	0.0	13.9	17.0	20
SK-331	151	0	2.41	003	0.2	1.03	21	0.5	0.07	15.3	15
SK-332	246	0	5.06	2670	0.2	1.00	74	1	14	32.7	45
SK-333	476	0	1.78	419	0.1	0.89	24	0.3	6.09	20.9	8
SK-334	257	0	4.18	1260	0.2	0.95	43	1.1	12.0	589	19
SK-335	934	0	6.02	2620	0.5	1.91	69	1.3	13.8	59.9	02
SK-330	414	0	5.1	2170	0.4	1.50	50	1.0	9.58	209	35
SK-337	579	0	5.87	2630	0.4	1.83	71	1.7	12.5	386	39
SK-338	300	0	5.62	2550	0.5	1.64	63	1.4	10.1	1100	41
SK-339	188	0	4.65	1460	0.2	1.34	37	0.7	11.3	20.2	25
SK-340	183	0	1.67	444	0.1	0.57	18	0.4	6.86	9.5	11
SK-341	462	0	2.88	1930	0.3	1.52	56	0.9	7.95	66300	26
SK-342	338	0	4.39	1780	0.3	1.85	50	1	13.6	10200	29
SK-343	/88	0	5.93	2560	0.5	2.05	78	1.2	14.9	130	38
SK-344	127	0	2.25	653	0.3	1.05	29	0.4	8.72	39.8	13
SK-345	166	0	2.36	536	0.2	1.14	25	0.6	9.21	16.3	13
SK-340	185	0	3.93	1670	0.3	1.29	45	0.7	14.4	40.8	42
SK-347	222	0	2.11	3720	0.2	1.07	129	2.1	12	49	59
SK-348	158	0	1.9	1270	0.2	1.02	49	0.6	9.28	23.9	23
SK-349	113	0	2.49	707	0.2	1.21	24	0.5	8.02	1	10
SK-350	104	0	2.35	007	0.2	0.96	25	0.4	9.62	10.9	15
SK-351	222	0	2.07	070	0.1	0.63	29	0.3	0.03	15.5	15
SN-352	229	0	2.32	1940	0.2	0.99	73	0.4	10.9	42.3	51
SK-353	254	0	0.92	3000	0.7	1.00	04 50	2.0	10.0	00.4 0450	00
SK-354	507	0	3.30	1740	0.4	2.03	0Z	1.1	10	3430	47
SK-355	007	0	4.5	3040	0.4	1.39	07	1.0	10.0	123	47
SK-350	327	0	3.45	1520	0.4	1.21	49	1.1	17.2	117	25
SK-357	193	0	2.59	1050	0.2	1.03	29	0.9	11.3	15.2	18
XX20	911	0	0.45	326	0.2	1.29	22	0.7	4.04	9400	0
SK-359	1310	0	3.98	5850	1	1.3	141	1	16.1	82.3	150
SK-300	4640	0	1.45	3640	0.8	0.79	52	0.9	11.8	36	82
SK-361	491	0	1.44	2310	0.3	1.19	/9	0.4	17.1	21.6	48
SK-362	229	0	2.21	2400	0.3	1.62	84	0.5	13.7	51.8	56
SK-363	239	0	14.1	3680	0.9	2.73	76	2.7	16.4	35.3	115
SK-364	289	0	12.9	4320	1	3.34	104	3.1	19.2	47.2	113
SK-365	224	0	15.9	3780	0.7	3.25	79	3.9	16.1	39.9	105
SK-366	1260	0	9.84	3220	0.6	2.19	106	2.1	18.4	73.3	83

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	ІС3М	IC3E	IC3M	IC3M	IC3E	ІСЗМ	ІСЗМ	ІС3М	IC3E
SK-367	329	0	4.76	3670	0.8	1.68	147	1.2	14.8	136	104
SK-368	476	0	5	6530	0.7	1.54	229	1.3	18.7	42	156
SK-369	464	0	3.42	5580	0.5	0.97	149	0.8	17.6	108	93
SK-370	454	0	5.92	2870	0.5	1.74	77	1.4	17.7	99	41
SK-371	1400	0	3.23	1750	0.5	1.3	64	1.1	15.7	5090	28
SK-372	736	0	5.39	3050	0.5	1.63	79	1.4	15.3	177	46
SK-373	1990	0	3.61	1010	0.3	2.62	37	1.7	21.9	97.3	17
SK-374	1090	0	5.19	2930	0.4	1.78	79	1.6	16.1	2580	56
SK-375	305	0	2.99	1310	0.1	1.19	28	0.6	14.1	52.6	22
SK-376	122	0	2.14	674	0.2	0.7	27	0.6	9.85	18.5	15
SK-377	200	0	2.24	698	0.1	0.77	25	0.5	11.1	15	15
SK-378	136	0	1.87	638	0.1	0.74	26	0.5	12	21.5	15
SK-379	119	0	2.24	785	0.2	1.41	27	0.4	19.3	23.2	16
SK-380	102	0	2.57	889	0.2	0.9	29	0.5	16.7	15.1	19
SK-381	122	0	2.25	744	0.2	0.94	28	0.6	11.1	12.2	15
SK-382	189	0	2.82	1010	0.2	0.99	30	1.5	11.2	19.6	22
SK-383	564	0	6.96	4270	0.6	1.57	88	1.3	16.1	53.1	56
SK-384	292	0	5.48	4370	1.1	1.79	149	1.2	16	156	127
SK-385	592	0	6.49	5940	0.6	1.97	178	1.6	18.3	112	175
SK-386	697	0	3.34	7670	0.2	0.9	177	0.7	16.4	87.6	112
SK-387	467	0	3.59	2130	0.3	1.47	58	0.9	11.8	16300	38
SK-388	476	0	3.68	1880	0.8	1.27	72	1.1	17.6	116	34
SK-389	3060	0	1.6	862	0.7	1.17	41	0.8	19.6	60.8	15
SK-390	660	0	4.79	2580	0.4	1.55	67	1.3	13.5	120	38
SK-397	338	0	3.08	5700	0.4	0.88	171	1.9	20.3	58.4 22.6	81
SN-392	200	0	3.00	2000	0.2	1.21	40	0.0	13.0	23.0	90
SK-393	300	0	0.25	1710	0.0	0.25	24	0.0	14	20.0	20
SK-205	3590	0	1.03	2640	0.4	0.35	34 86	0.3	4.47	20.9	57
SK-306	224	0	0.89	3/90	0.2	2.36	53	0.3	9.90 10.0	41.7	63
SK-397	2190	0	0.43	1240	0.3	0.96	41	0.0	9.84	30.4	20
SK-398	326	0	8 48	3920	0.5	2.71	98	1.9	16	35.4	94
SK-399	358	0	17.7	3650	0.6	3.13	72	3.1	16.7	29.9	105
SK-400	433	0	18.1	3710	0.6	3.93	69	3.7	14.6	30.9	110
SK-401	409	0	8.35	4990	0.9	2.73	151	1.9	14.3	139	169
SK-402	289	0	4.67	4090	2.5	2.43	183	1.3	16.5	173	126
SK-403	495	0	4.88	3970	0.4	1.37	107	1	14.6	96.8	55
SK-404	622	0	5.98	2850	0.5	1.55	74	1.3	13.4	102	40
SK-405	3880	0	1.27	1270	0.4	1.19	46	0.6	15.2	70.6	20
SK-406	685	0	5.47	2540	0.5	1.67	72	1.1	15.7	107	39
SK-407	495	0	5.27	2370	0.5	1.76	65	1.1	16	81.2	37
SK-408	336	0	4.22	5730	0.5	1.08	191	2.9	27.8	57	78
SK-409	193	0	2.04	871	0.2	0.87	30	0.5	9.45	25.3	20
SK-410	234	0	1.69	515	0.1	0.56	21	0.5	8.85	7.4	11
SK-411	148	0	1.96	649	0.1	0.6	28	0.3	7.99	16.6	13
SK-412	124	0	2.54	876	0.2	0.93	32	0.7	8.81	12.4	18
SK-413	97.3	0	2.16	724	0.2	0.66	28	0.4	9.01	19	15
SK-414	520	0.2	9.19	6740	0.7	2.89	208	1.9	17.1	101	201
SK-415	612	0	6.44	5680	2.1	2.5	198	1.4	14.1	108	124
SK-416	501	0	5.1	2420	0.5	1.39	66	1	14.3	94.4	37
SK-417	3800	0	0.49	999	1.7	0.83	35	0.7	11	24.4	19
SK-418	1010	0	4.9	2340	0.7	1.48	68	1.2	19.4	121	37
SK-419	3120	0	0.97	743	0.2	0.77	31	0.9	15.1	36.1	17
SK-420	486	U	4.62	2880	0.5	2.17	61	1.1	18	90.3	132
SK-421	465	0	4.95	2110	0.5	2.36	71	1	15.4	143	44
SK-422	360	0	3.73	5340	1.2	1.01	128	0.6	11.8	108	133
SK-423	4540	0	0.82	2480	0.3	0.65	31	0.4	5.5	65.9	61
SK-424	222	0	1.18	4110	10	1.13	03	0.5	13.9	31.9 52 F	74
SK-425	340	0	1.15	3080	1.2	1.30	102	0.3	11.3	03.0 22.0	117
SK-420	309 276	0	10.2	4270	0.0	<u>১.৬৬</u> ১.৫১	77	2.0	14.9	20.0 20.7	117
011-421	210	U	19.0	2900	0.9	2.03		5.0	10	20.1	117

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт	ррт
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3E	IC3M	IC3M	IC3M	IC3E
SK-428	708	0	8.43	5050	0.7	2.32	156	1.7	15.6	127	153
SK-429	515	0.3	10.1	6550	0.7	2.72	213	1.7	17.5	98	192
SK-430	934	0	5.63	4830	0.6	1.7	170	1.2	15.6	98.6	99
SK-431	582	0	5.49	3700	0.6	1.54	120	1.2	13.1	121	66
SK-432	643	0	4.16	2490	0.4	1.12	80	0.7	12.7	181	58
SK-433	2700	0	0.51	738	2.3	0.56	31	0.7	12.9	31	15
SK-434	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S	I/S
SK-435	142	0	5.45	3380	0.9	1.7	63	3	13.1	34.6	59
SK-436	269	0	4.4	4930	0.7	1.11	148	3.3	14.3	47.5	91
SK-437	147	0	0.83	198	0	0.49	17	0.3	5 17	7.7	6
SK-438	244	0	1 98	604	0.2	0.10	25	0.0	9.09	14.3	15
SK-439	171	0	1.58	480	0.2	0.57	21	0.0	6.53	11.0	11
SK-440	147	0	1.00	663	0.1	0.69	26	0.4	7.86	20.5	14
SK-111	185	0	2 20	669	0.2	0.00	20	0.7	11.00	20.0	14
SK-447	878	0	7 73	3110	0.5	2.78	70	1.8	30	121	176
SK-442	360	0	3.00	1350	0.5	2.70	55	0.6	10.4	111	20
SK-445	274	0	4 71	7220	0.0	1.04	117	0.0	19.4	02	172
SK-444	2070	0	4.71	1250	0.0	0.65	70	0.6	0.1	3Z 41.2	02
SK-445	2970 572	0	2.70	4230 5120	0.3	1.21	19	0.0	9 12.0	41.2	92
SK-440	165	0	0.79	2450	0.7	0.27	22	0.4	13.0	97.3	120
SK-447	100	0	0.70	2430	0.2	0.37	22	0.4	12.0	21.2	41
SK-440	207	0	1.77	1440	0.2	0.7	30	0.5	11.7	50.4	21
SK-449	630	0	9.14	5650	0.4	2	140	1.8	10.7	54.5 0.47	114
SK-450	2040	0	3.07	1920	0.2	1.18	54	1	13.1	247	22
SK-451	495	0	3.37	1640	0.2	1.25	40	0.8	12.0	108	24
SK-452	246	0	0.21	4690	0.6	1.88	160	1.5	17.9	51.8	135
SK-403	233	0	0.33	5190	0.4	1.8	145	1.4	20.5	44.3	141
SK-454	327	0	2.22	3470	0.3	0.5	80	0.4	13.9	26.9	54
SK-455	506	0	1.62	673	0.1	0.73	24	0.4	12.5	45.7	8
SK-455	602	0	2.51	1380	0.2	1.27	40	0.8	10.9	108	18
SK-457	369	0	3.28	5840	0.5	1.24	124	0.9	17.7	87.1	81
SK-458	848	0	1.35	573	0.1	0.94	21	0.5	8.33	130	9
SK-459	242	0	3.11	1350	0.2	1.19	43	0.7	10.4	51.3	26
SK-460	110	0	2.28	577	0.3	1.02	31	0.5	11.9	28.3	13
SK-461	125	0	2.37	661	0.2	0.63	24	0.5	7.82	13.1	13
SK-462	82.3	0	2.35	816	0.2	0.79	26	0.5	8.76	13.3	15
SK-463	527	0	2.52	1030	0.2	1.11	32	0.6	10.4	/1.1	17
SK-464	874	0	7.34	2550	0.3	2.27	48	1.5	30.1	126	153
SK-465	558	0	3.85	1530	1	1.68	49	0.8	11.8	92	25
SK-466	720	0	4.4	/190	0.7	1.04	153	0.9	13.1	100	132
SK-467	1180	0	1.81	3900	0.5	0.98	44	0.8	9.41	112	85
SK-468	2800	0	2.75	6060	0.3	1.1	100	0.7	11.5	100	126
SK-469	245	0	3.18	3880	0.4	1.11	83	0.8	10.3	4150	69
SK-470	247	0	2.45	4120	0.4	1.18	62	0.7	13	435	67
SK-4/1	380	0	1.43	5910	0.1	0.74	162	0.3	15.3	82.5	89
SK-4/2	639	0	4.59	2480	0.3	1.33	75	1.3	11.4	398	33
SK-4/3	982	0	10.3	2310	0.4	2.85	26	2	25	49.6	173
SK-4/4	401	0	5.58	5970	0.7	1.63	193	1.2	18.2	76.4	136
SK-4/5	352	0	7.17	5360	0.7	2.62	158	1.4	17.4	78.4	147
SK-4/6	387	0	3.65	3720	0.4	1.17	88	0.6	14.5	74.1	81
SK-4//	580	0	6.17	2620	0.4	2.4	59	1.2	14.3	97.7	37
SK-4/8	246	0	7.5	5690	0.8	2.41	222	1.6	17.5	134	147
SK-4/9	222	0	2.37	4640	0.4	0.94	111	1.4	14.8	53.7	79
SK-480	250	0	5.43	4230	0.7	1.63	110	2.6	11.6	51.5	94
SK-481	164	0	1.09	261	0	0.52	18	0.3	8.76	51.5	6
SK-482	113	0	2.79	784	0.2	0.88	28	0.4	9.05	19.7	15
SK-483	101	0	2.01	582	0.1	0.64	32	0.4	5.77	8.5	12
SK-484	369	0	7.34	3890	0.5	1.54	75	1.2	14.5	43.5	45
SK-485	548	0	6.92	2800	0.8	1.79	67	2.3	14.5	157	64
SK-486	554	0	5.79	2700	0.6	1.67	62	1.8	14.4	174	49
SK-487	573	0	5.56	2390	0.5	1.52	56	1.4	15.1	93	36
SK-488	1290	0	2.91	2970	0.5	0.85	66	0.9	9.67	85	46

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт									
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	IC3M	IC3E	IC3M	ІСЗМ	IC3E	ІСЗМ	IC3M	ІС ЗМ	IC3E
SK-489	418	0	3.17	5780	0.9	0.81	133	1	11.1	82.4	100
SK-490	235	0	2.89	3520	0.5	1.35	92	1.1	12	56.7	69
SK-491	1280	0	4.1	8930	0.2	1.3	147	1.1	16.1	77.1	190
SK-492	482	0	3.16	3010	0.4	0.95	75	1.5	13.8	80.5	48
SK-493	585	0	6.67	2880	0.5	1.75	65	1.6	13.2	81	40
SK-494	602	0	10.3	3520	0.6	2.21	84	1.7	14.6	94.5	73
SK-495	592	0	9.92	4310	0.7	2.11	108	1.7	16.7	91.3	124
SK-496	475	0	7.79	6550	0.5	2.1	162	1.7	19.2	219	180
SK-497	327	0	5.78	4760	0.7	1.69	145	1.3	15.5	156	116
SK-498	483	0	4.96	7070	0.6	1.34	183	1	18.1	182	124
SK-499	492	0	3.71	5920	0.3	0.98	121	0.8	16.4	139	88
SK-500	967	0	2.49	2740	0.3	0.95	64	0.5	13.6	43.7	49
SK-501	334	0	2.54	935	0.2	0.92	29	0.6	10.7	53.8	14
SK-502	342	0	1.42	1330	0.3	0.69	48	0.6	13.6	68.1	24
SK-503	146	0	2.65	833	0.2	1.05	27	0.4	11.4	38.6	15
SK-504	79.9	0	2.77	947	0.2	0.8	30	0.5	8.96	24.9	16
SK-505	336	0	3.81	1760	0.3	1.18	38	0.8	14	35.7	28
SK-506	640	0	6.29	2740	0.5	1.7	64	1.4	13	109	36
SK-507	533	0	5.56	2600	0.4	1.53	59	1.2	11.8	82.5	36
SK-508	567	0	5.38	2810	0.4	1.53	65	1.3	12.8	125	39
SK-509	593	0	5.96	2460	0.5	1.59	60	1.3	13.1	124	34
SK-510	273	0	4.76	6400	1.1	1.47	160	1.1	12.4	83	125
SK-511	270	0	4.52	8200	2.1	1.48	225	1.2	14.1	110	142
SK-512	590	0	3.37	7020	1.1	1.22	103	0.7	13.8	102	157
SK-513	227	0	3.42	6320	0.8	1.1	133	0.8	17.1	99.5	117
SK-014	217	0	7.97	3500	0.7	1.77	80	1.8	15.6	20.3	113
SK-515	332	0	3.30	1510	0.2	1.10	30	0.6	10.4	30.9	27
SK-510	304	0	5.54	4160	0.6	1.00	00	1.0	12.0	32.3	63 50
SK-512	486	0	0.32	6000	0.4	2.41	40	1.2	17.5	186	173
SK-510	400	0	8.2	6170	0.0	2.41	176	1.0	16.4	168	173
SK-520	228	0	2.27	2590	0.3	0.76	61	0.4	16.4	42.2	50
SK-521	280	0	3.12	3140	0.0	0.70	89	0.4	15.5	26.9	69
SK-522	142	0	4.53	3220	0.8	1.37	87	2.9	13	109	70
SK-523	182	0	2.72	3390	0.5	1.29	99	1.6	19.7	106	63
SK-524	443	0	3.03	2270	0.6	0.95	79	0.5	11.7	172	48
SK-525	242	0	3.09	2180	0.3	0.93	56	1.4	17.6	36.8	56
SK-526	198	0	1.8	1420	0.2	0.72	56	1.2	15.6	45.5	24
SK-527	724	0	2.47	1720	0.2	0.9	48	0.7	12.9	44.4	28
SK-528	107	0	2.37	779	0.4	1.78	27	0.4	6.83	23.8	13
SK-529	133	0	2.5	1640	0.3	0.64	45	0.7	9.65	28.2	25
SK-530	111	0	4.52	1990	0.4	0.94	40	1.3	7.87	25.3	29
SK-531	263	0	3.05	1300	0.2	0.9	31	0.8	15.4	56.7	23
SK-532	281	0	3.67	3090	0.3	1.33	115	0.8	15.5	97.6	80
SK-533	198	0	4.9	4700	0.7	1.67	124	2.6	16.6	73.3	102
SK-534	1050	0	5.17	3180	0.5	1.47	86	1.1	12.4	72.6	84
SK-535	2370	0	0.64	1200	0.3	0.61	57	0.6	7.04	51.2	22
SK-536	818	0	1.6	1250	0.1	0.41	64	0.5	15.8	54.6	32
SK-537	194	0	4.94	4530	2.3	1.31	104	1.8	16.2	45.6	118
SK-538	374	0	6.44	4570	0.6	1.3	47	1.4	15.9	44.6	114
SK-539	399	0	3.92	1100	0.2	0.8	22	0.8	14.9	60.1	15
SK-540	538	0	1.04	390	0.2	0.4	20	0.3	19.9	75.2	6
SK-541	73.8	0.5	6.25	1490	0.5	1.33	24	1.2	13.4	72.3	19
SK-542	91	0	4.51	1020	0.4	1.1	20	1.2	12.1	45.9	16
SK-543	342	0	5.11	1070	0.4	1.36	26	1.3	11.3	154	13
SK-544	703	0	6.16	2690	0.4	1.4	43	1.3	11.8	174	22
SK-545	362	0	7.02	1590	0.4	1.65	33	1.5	13.1	196	18
SK-540	460	0	4.18	5390	0.7	1.14	/2	0.9	12.3	/2.2	116
SK-54/	282	0	6.23	4900	0.8	1.96	99	1.2	14.6	84.2	116
SK-548	372	0	3.81	3900	0.7	1.86	83	1.3	9.61	70.7	83
SK-549	310	0	2.52	4870	0.6	0.86	185	0.6	11.7	132	79

KAVOSH KANSAR	Sr	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
UNITS	ррт	ррт									
DETECTION	0.1	0.2	0.02	10	0.1	0.02	2	0.1	0.05	0.2	5
METHOD	IC3E	IC3M	IC3M	IC3E	IC3M	ІСЗМ	IC3E	IC3M	IC3M	IC3M	IC3E
SK-550	219	0	3.55	6370	1.1	1.05	96	0.7	13	105	139
SK-551	351	0	2.77	1920	0.3	0.9	57	0.7	11.3	91	37
SK-552	359	0	2.98	1340	0.2	1.05	40	0.7	10.7	45.6	25
SK-553	443	0	2.13	838	0.1	0.9	26	0.5	9.87	45.2	12
SK-554	124	0	9 35	1160	0.1	1.62	32	1.4	11.6	46.6	30
SK-555	213	0	7 10	2810	0.4	1.02	70	1.4	12.1	3/1 3	51
SK-556	837	0	1.10	4690	0.4	1.40	140	0.9	12.1	131	96
SK-557	571	0	6.86	5560	0.5	1.27	147	1.4	14.7	191	125
SK-557	283	0	7.12	3160	0.0	2.05	102	1.4	15.4	100	70
SK-550	203	0	5.07	2000	0.4	1.75	62	1.0	10.4	26.0	10
SK-559	204	0	5.07	2090	0.4	1.75	126	1	14.5	30.9	40
SK-500	214	0	4.10	4290	0.4	1.20	101	0.9	14.0	60.2	04 76
SK-501	231	0	4.90	3120	0.6	1.04	57	1.2	10.0	00.2	10
SK-502	241	0	4.02	1960	0.5	1.3	57	1	10.9	22.0	40
SK-203	413	0	5.61	3150	4.2	1.24	82	1.2	17.3	56.3	57
SK-564	700	0	3.59	2370	0.3	0.84	63	0.7	13.1	88	40
SK-565	315	0	6.25	4940	0.6	1.44	87	2.1	15.6	78.7	/1
SK-566	167	0	7.25	3970	0.8	1.83	42	1.8	11.8	70.1	33
SK-567	295	0	6.47	3540	0.7	1.75	68	1.2	10.7	68.2	57
SK-568	189	0	2.08	660	0.3	0.61	21	0.2	7.32	29.6	11
SK-569	209	0	5.65	2270	0.5	1.56	48	1.2	16.1	105	50
SK-570	329	0	9.39	3230	0.6	2.61	104	2	13.7	81	83
SK-571	437	0	7.71	4480	0.4	2.29	143	1.7	15.3	107	102
SK-572	282	0	5.44	6380	0.3	1.45	91	1.1	15	87.8	58
SK-573	364	0	3.81	3060	0.5	1.15	91	0.8	13	104	43
SK-574	564	0	6.85	4440	0.6	1.41	98	1.3	11.2	40.2	55
SK-575	869	0	5.98	2350	0.6	1.52	45	1	12.7	66.4	26
SK-576	655	0	5.36	4490	0.4	1.49	100	1	11.5	69.3	74
SK-577	617	0	6.74	3890	0.5	2	84	1.4	12	73	63
SK-578	861	0	6.53	3460	0.5	1.86	70	1.2	12.3	56.2	49
SK-579	570	0	6.55	3130	1.5	1.65	42	1.5	11.7	47.2	30
SK-580	965	0	4.69	2820	0.7	1.47	76	0.7	12.8	76	56
SK-581	903	0	5.21	2450	0.3	1.31	81	0.7	10.9	85	36
SK-582	128	0	4.15	1200	0.6	1.22	45	0.9	10.8	53.2	30
SK-583	876	0	4.57	1560	0.8	1.5	30	0.7	9.08	131	17
SK-584	841	0	7.8	4090	0.8	2.03	75	0.7	17	130	136
SK-585	501	0	3.26	1290	0.5	1.43	31	0.6	12	80.9	23
SK-586	279	0	2.59	465	0.3	1.18	14	0.5	11.7	46.7	6
SK-587	173	0	3.42	778	0.3	1.04	29	0.4	12.8	41.3	18
SK-588	746	0	3.64	1410	0.3	1.17	46	0.5	10.2	33.6	27
SK-589	1560	0	2.38	1530	0.8	0.98	48	0.6	19.5	76.8	21
SK-590	427	0	4.18	3220	0.5	1.91	87	0.7	10.3	24.3	76
SK-591	380	0	3.76	1880	0.2	1.25	43	0.3	13.4	38.9	32
SK-592	463	0	18.2	3370	0.5	2.94	92	1.8	14.4	23.8	112
SK-593	364	0	5.14	1930	1.3	1.64	42	0.4	15.9	25.7	61
SK-594	720	0	4.71	3270	0.4	1.39	122	0.6	15.1	39	99
SK-595	845	0	7.04	6080	0.5	2.04	244	1.1	13.7	124	160
SK-596	970	0	7.98	5510	0.6	2.06	191	1.1	14	67.5	138
SK-597	947	0	7.03	6030	0.5	2.09	247	1	14.8	170	142
SK-598	628	0	6.1	4220	0.5	2.23	179	0.8	14.7	67.1	116
SK-599	551	0	3.5	2200	0.3	0.98	91	0.3	13.8	49.2	67
SK-600	476	0	6.78	3800	0.8	1.78	110	1.2	11	42.9	62
SK-601	792	0	6.31	3320	0.5	1.53	72	1.4	13.3	35.4	56
SK-602	663	0	6.8	3630	0.7	1.74	118	1.9	12.2	36	61
SK-603	657	0	6.99	3790	0.6	1.98	93	1.6	11.9	49.1	68
SK-604	722	0	7.06	3940	0.5	1.8	109	0.9	10.5	66.4	63
SK-605	750	0	7.11	3430	0.6	2.28	87	1.1	12.1	42.1	65
		·	·	·	·		·	·	·	·	

پیوست شماره ۶

نتایج آنالیز نمونه های تکراری

پیوست شماره ۲ نتایج آنالیز نمونه های برداشت شده از ترانشه ها

پیوست شماره ا نتایج آنالیز XRD
پیوست شماره ۹ نقشه داده های خام

پیوست شماره ۱۰

نقشه داده های شاخص غنی شدگی

پیوست شماره ۱۱ نقشه های شاخص دگرسانی

پیوست شماره ۱۲

نقشه های اندیس جمعی، فاکتورها و سطح فرسایش

پیوست شماره ۱۳

نقشه توپوگرافی تهیه شده از منطقه به مقیاس ۱:۵۰۰۰ همراه با نقاط نمونه برداری لیتوژئوشیمیایی

پیوست شماره ۱۴ نقشه زمین شناسی تهیه شده از منطقه به مقیاس ۱:۵۰۰۰